
Machine Learning: Social Values,
Data Efficiency, and Beyond Prediction

Committee:
Maria-Florina Balcan (Chair)

Yishay Mansour (Tel Aviv University)
Tom Mitchell

Ariel Procaccia

Travis Dick

Modern Machine Learning
Classic machine learning: deep theory and powerful tools for learning to predict from data.

Decision Trees BoostingSVMs Kernel Methods

VC-Dimension
Neural Networks

& much more

As ML is applied in the real world, we encounter new and interesting questions.

This thesis builds on the theory and practice of ML to accommodate modern ML requirements.

Improving our ability to make
predictions with available data.

Making sure ML predictions
don’t violate our social values.

ML for learning forms of
knowledge beyond prediction.

? ??
?

?
? ?

??

??

• Disparity in cost of data.

• Unlabeled data is very cheap,
labeled examples are expensive.

• Design & analyze label-efficient
multi-class learning algorithms.

[Balcan, Dick, Mansour AAAI 2017]

• Learning from private data.

• Making consequential predictions.

• We study envy-freeness as a
notion fairness for ML.

• Differentially private learning.

[Balcan, Dick, Noothigattu, Procaccia, 2019]

Three projects expanding the predictive possibilities of ML

Algorithm

• Learning models motivated by
data-driven alg. configuration.

• Using data to learn the best
algorithm for specific application.

• Results for online learning with
piecewise Lipschitz losses.

[Balcan, Dick, Vitercik, FOCS 2018]
[Balcan, Dick, Pegden, 2019]

[Balcan, Dick, Lang, 2019]
[Balcan, Dick, Vitercik, FOCS 2018]

Label-Efficient Learning in Multiclass Problems

Joint work with Nina Balcan and Yishay Mansour [AAAI 2017]

Modern ML has huge amounts of raw data

Label Efficient Learning by Exploiting Multi-class Output Codes

Charge ~$0.10 per text label.
~$0.84 per image segmentation.

[Balcan, Dick, Mansour AAAI 2017]

Labeling data is expensive

Social Network Data

~6000 tweets per second

Images

• We prove guarantees for multiclass prediction problems.
• Exploit implicit assumptions of supervised learning algorithms.

Semi-Supervised

[Blum & Mitchell ’98; Balcan, Blum, Yang ’04;
Balcan & Blum ’10, Chapelle et al. ‘10]

[Balcan et al. ’06; Dasgupta ‘11;
Hanneke 14’; Balcan & Urner ’15]

interaction

Active Learning

Learner

Label Efficient Learning by Exploiting Multi-class Output Codes
[Balcan, Dick, Mansour AAAI 2017]

Prior work primarily focused on binary classification.

Long line of work on learning prediction rules from limited labeled data.

Label Efficient Learning by Exploiting Multi-class Output Codes
[Balcan, Dick, Mansour AAAI 2017]

High Level Approach:
• Assume an output code classifier could learn from labeled data.
• This implies geometric structure in the underlying data.
• Exploit that structure to design label-efficient learners.

+1 +1 -1 +1
+1 +1 -1 -1
-1 -1 -1 -1
-1 +1 +1 -1

cat
dog

penguin

giraffe

Pet?
Fu

r? Lo
ng n

eck?

Lem: If ∃ consistent error correcting linear output code s.t. rows of the code matrix have
hamming distance at least " + 1, then there is a margin between all pairs of classes.

• Careful clustering of the data has label-homogeneous clusters!
• Just need one label per cluster.

• Our other results significantly reduce the Hamming distance requirement.

Multip
le liv

es?

h1 h2

h3

h4

K1

K2

K3

Fairness in Machine Learning
Joint work with Nina Balcan, Ritesh Noothigattu, and Ariel Procaccia

A New Approach to Individual Fairness: Envy-free Classification
[Balcan, Dick, Noothigattu, Procaccia, 2019]

ML is making predictions about us.
Want guarantees about fair treatment.

E.g., Advertisements shown by search engines.

• Sweeney [‘13] found that searches for
names showed ads suggestive of arrest
records more often for some racial groups.

• Datta et al. [‘15] found different
employment ads shown to men and
women with identical search histories.

Group Fairness:
Subgroups treated fairly on average.

[Luong et al. ‘11; Zemel et al. ‘13;
Hardt et al. 16; Zafar et al. ’16]

Individual Fairness:
Fairness for every individual.

[Dwork et al. ‘12; Joseph et al. ‘16]

A New Approach to Individual Fairness: Envy-free Classification
[Balcan, Dick, Noothigattu, Procaccia, 2019]

• Import Envy-freeness from fair division [Foley ‘67; Varian ‘74].

• The gold standard for:
• cake cutting [Robertson & Webb 98; Procaccia ‘13] ,

• Rent division [Su ‘99; Gal et al. ‘17].

Def: Classifier ℎ is envy-free when no individual prefers prediction made for another.

A New Approach to Individual Fairness: Envy-free Classification

• Preferences can be estimated from data!
• Works with heterogeneous preferences.
• Main result: generalization guarantees

[Balcan, Dick, Noothigattu, Procaccia, 2019]

Thm: For family " of random classifiers, any ℎ ∈ " that is EF on sample of $ %/'(is
(', ')-approximately EF on the distribution.

" contains random mixtures of deterministic classifiers.
% = - ⋅ NDim(3), - = mixture size, NDim(3) = complexity of fns being mixed.

New Learning Formulations
Motivated by

Data-driven Algorithm Configuration

Based on joint work with
• Nina Balcan and Ellen Vitercik [FOCS 2018]
• Nina Balcan and Wesley Pegden [2019]
• Nina Balcan and Manuel Lang [2019]

Data-driven Algorithm Configuration
Classic Algorithm Design: Design algorithms for the worst-case.

• Some domains have always-efficient optimal algorithms

• Many important domains are hard in worst case:
• Clustering, subset selection, auction design, etc.

• “typical” applications aren’t too hard.

Data Driven Algorithm Design: Use data to design/fine-tune algorithms.

• Repeatedly solve problems from the same application.

• Use historic problem instances to find the best algorithm.

Data-driven Algorithm Configuration

Data Driven Algorithm Design Approach:
• Fix a parameterized family of algorithms.
• Different algs from family work better for different applications.
• Learn best alg/parameters from example problems.

Common in Practice:
• Artificial Intelligence: E.g. [Xu, Hutter, Hoos, Leyton-Brown, JAIR ‘08]

• Computational Biology: E.g. [DeBlasio, Kececioglu, ‘18]

• Game Theory: E.g. [Likhodedov & Sandholm, ‘04]

Focus on empirical performance.

Example: Hierarchical Clustering
Given a collection of objects, organize them into a hierarchical clustering.
E.g., Clustering news articles by topic

All Topics

Sports Technology

Hockey Soccer Drones Virtual Reality

Or clustering images by content.
Or vacation destinations by type of attraction.

Example: Hierarchical Clustering
Linkage based clustering
1. Start with each object in its own cluster
2. Repeatedly merge “closest” pair of clusters

Single Linkage: !"#$ %, ' = min,∈.,/∈0 1(3, 4)
Complete Linkage: !"67 %, ' = max,∈.,/∈0 1(3, 4)

Different definitions of “closest” give different algorithms.

: = 0 : = 1

…

: = 0.2

…

!? %, ' = 1 − : !"#$ %, ' + : ⋅ !"67(%, ')C-Linkage: For : ∈ [0,1]
[Balcan et al. ‘17]

Example: Greedy Knapsack Algorithm

Add items in decreasing order of score& ' =)*/,*&.
Algorithm: (Parameter - ≥ 0)

• Given 0 items
• item ' has value)* and size ,*
• a knapsack with capacity 1
Find the most valuable subset of items that fits.

Problem Instance:

[Gupta & Roughgarden ’16]

ML Theory for Data Driven Algorithm Configuration

[ITCS ’16, SICOMP’17]
[COLT ‘17]

First ML-style guarantees are recent.

Prior work focuses on the batch setting.

Application Specific
Problem Distribution

Sample of i.i.d. problem instances

Choose algorithm parameter
to minimize expected cost.

In this thesis: ML for data driven combinatorial alg. config in online and private settings.

[NeurIPS ‘18]
[ICML ‘18]

Key Structure in Combinatorial Alg. Configuration

For one problem instance, cost/loss is piecewise Lipschitz fn of parameters.

!

lo
ss

Piecewise Lipschitz Fns in Knapsack

Add items in decreasing order of score& ' =)*/,*&.
Algorithm: (Parameter - ≥ 0)

• Given 0 items
• item ' has value)* and size ,*
• a knapsack with capacity 1
Find the most valuable subset of items that fits.

Problem Instance:

Lem: Value is piecewise constant in -.
• Only item order matters.
• Any item pair changes order at one value of - -

va
lu

e

Order of items fixed.

[Gupta & Roughgarden ’16]

Piecewise Lipschitz Fns in !-Linkage

• Balcan et al. [‘17] show output of !-Linkage is piecewise constant.
• Only distance ordering on possible merges matters.
• For any pair of pair of merges (#, #%) and (', '%), order changes only for one value of !.
• Distances between (#, #%), (', '%) depend on 8 points à *(+,) discontinuities.

! ∈ [0,1]

Any loss that only depends on output is piecewise constant!

For each round ! = 1,… , &:
1. Learner chooses '(∈ * ⊂ ℝ-.
2. Adversary chooses piecewise .-Lipschitz loss ℓ(: * → ℝ.
3. Learner incurs cost ℓ('(
4. Learner gets feedback on ℓ(.

Learning protocol:

Goal: Minimize regret = ∑(456 ℓ('(− min
;∈<

∑(456 ℓ((') .

Online Learning with Piecewise Lipschitz Losses

Meaningful Learning: Regret sublinear in &.

• Full-information: Observe entire loss function ℓ(.
• Bandit: Observe just ℓ('(∈ ℝ.
• Semi-bandit: Observe ℓ((') for all ' in subset ?(⊂ *.

Why isn’t this solved already?
Existing bounds are for more structured settings [e.g., Cesa-Bianchi & Lugosi ‘06, Bubeck ’11]

Main Challenge: When the losses have discontinuities, cannot achieve sublinear regret!

Simple adversary ensures Ω(#) regret. Need additional structure!

Under full-info, Regret ≤ &'(#×problem dependent terms).

Prediction with (finite) expert advice. Finite-armed Bandits Convex Fns Globally Lipschitz Fns
[Kleinberg et al. ‘08]

Dispersion

Def: Function ℓ", ℓ$ … are &-dispersed if ∀ times (∈ ℕ and ∀ radiuses + ≥ (-.,
expected # of non-Lipschitz fns on worst ball of radius + is /0((+). I.e.,

3 max7 |{1 ≤ < ≤ (∶ ℓ> not Lipschitz on I(J, +)}| ≤ /0((+)

• Discontinuities only problematic if concentrated.
• We introduce dispersion for measuring concentration.
• Improved version of definition from Balcan, Dick, Vitercik [FOCS 2018].

• Expectation over random losses (e.g., if smoothed)
• Larger L is stronger.

[BDP ‘19]

“In balls of radius +, encounter non-Lipschitz functions at rate /0(+)”
(as long as + is not too small)

/0 hides log terms and application-specific terms

The Sum of Disperse Functions

Not disperse

Many discontinuities within interval

Let ℓ", ℓ$, … be PWL functions and plot their sum ∑'(") ℓ'

Disperse

Few boundaries within interval

Dispersion for !-Linkage
Study smoothed adversaries – small amount of noise added to problems.

Intuition:
• Each loss fn has "($%) discontinuities.
• Noise in distances à noise in discontinuity locations.
• Don’t expect many to land in an interval of width '.
• (term accounts for taking the worst interval.

Similar arguments hold for many other domains.

Thm: If) 0, , noise added to pairwise distances every round. Then after (rounds
• Expected non-Lipschitz loss fns on worst '-interval is " ('$%/,. + (log ($.
• 3-dispersed for 3 = 1/2. [BDP ‘19]

Full Information Regret Bounds
Continuous Multiplicative Weights [Cesa-Bianchi & Lugosi ’06]

Algorithm: (Parameter ! > 0)
At round $, sample %& from '& % ∝ exp(−!∑/01&21 ℓ/(%)).

Thm: If ℓ1, ℓ6, … 8 → [0,1] are piecewise =-Lipschitz and >-dispersed, then ∀@,

A B
&01

C
ℓ& %& − ℓ& %∗ ≤ FG @H + @12J .

• FG(@H) optimal for globally Lipschitz functions.

• Regret due to discontinuities is FG(@12J).
• Bound improves as > grows until > = 1/2.

[BDV, FOCS 2018]

Theorem: (%-Linkage) Add O(0, P) to pairwise distances. Then after @ rounds
Regret ≤ G(@ log W@/P)

Bandit-feedback Regret Bounds

Algorithm: (Parameters ! > 0, $ > 0
Let %&,… , %) be an !-net for *.
Use EXP3 to choose %+ ∈ {%&, … , %)}

Thm: If ℓ&, ℓ0 , … : 2 → [0,1] are piecewise 7-Lipschitz and 8-dispersed, then

9 :
+;&

<
ℓ+ %+ − ℓ+ %∗ ≤ @A B

CD&
CD0(3C + 7) + B&IJ .

• B
LMN
LMO is optimal exponent for globally Lipschitz functions. [Kleinberg et al. ‘08]

• Bound improves as 8 grows until 8 = 1/(R + 2).

Discretization Algorithm:

[BDV, FOCS 2018]

[Auer et al. ’01]

Thm: (%-Linkage) Add T(0, U) to pairwise distances. Then after B rounds
Regret ≤ A([\B0/]/U0)

Feedback in Algorithm Configuration
Most domains provide full-information feedback.

Problem Instance

Algorithm Output

Run with parameter !
Evaluate ℓ(!)

Run with parameter !%
Evaluate ℓ(!′)

⋮
• Full-info feedback can be expensive: many runs of algorithm.
• Bandit feedback is more efficient, but has worse regret bounds.

• Next: we can sometimes get the best of both by exploiting extra structure [BDP ‘19].

Extra Structure: Semi-bandit feedback
Key insight from many implementations:
• Running algorithm once reveals loss for a range of parameters.
• Often an entire piece of piecewise Lipschitz loss!
• E.g.

Greedy
Knapsack

Linkage-based
Clustering

Variable selection in
Branch and Bound

! "
= 0 !"= 1

! &
= 0

!& = 1

Initialization for
'-means clustering

Semi-bandit Feedback
Def: (Semi-bandit feedback)

At time !, there is a partition "#$, … , "'$ of (.
When learner plays)$ ∈ "+$ they observe "+$ and ℓ$()) for all) ∈ "+$.

)$

Loss

(

"#($)

"/($)

"0($)
"1($)

Learning with Semi-bandit Feedback

Algorithm:
Use importance weighting to estimate complete loss

!ℓ# $ =
& $ ∈ (#

)# (#
ℓ#($)

Scales loss by 1/(probability of observing it).

Run continuous multiplicative weights on !ℓ,, !ℓ., …

Thm: If ℓ,, ℓ., … ∶ 1 → [0,1] are piecewise 7-Lipschitz, 8-dispersed, and ≤ : feedback sets,

; <
#=,

>

ℓ# $# − ℓ# $
∗ ≤ AB CD: + D,FG .

[BDP ‘19]

Continuous version of EXP3-SET algorithm of [Alon, Cesa-Bianchi, Gentile, Mannor, Mansour, Shamir ‘17]

$#

Loss

I

(
,

(#)

(
J

(#)

(
K

(#)
(
.

(#)

Linkage Clustering with Semi-bandit Feedback

Thm: (!-Linkage) Add "(0, &) to pairwise distances. Then after (rounds EXP3-SET satisfies:
Regret ≤ / 01 (log (0/&

• (regret, like full-info.
• Run algorithm once per round, like bandit feedback.

• From a single run of !-linkage, we can get semi-bandit feedback.
• A bit of extra computation to keep track of nearest discontinuities to !.
• Number of feedback sets is 5 = /(07).

Algorithm Configuration Experiments
Joint work with Nina Balcan & Manuel Lang

Experiments in the Batch Setting
Batch setting:
• Distribution ! over problems.
• Given i.i.d. sample from !, find algorithm with lowest expected error on !.

!

Sample of i.i.d. clustering tasks
Choose algorithm

parameter to minimize
expected cost.

Two Questions:
1. Sample Complexity: How many samples do we need to see to find nearly optimal parameter.
2. Computational Complexity: How can we efficiently find the best parameter?

Empirical Risk Minimization for Linkage Clustering

For each instance, Hamming error is piecewise constant
Cluster distance fn: !" #, % = 1 −) !*+, #, % +) ⋅ !*/0(#, %)

)

)

)

Algorithm:
1. Compute PWC loss for each instance.

(i.e., discontinuities and values)
2. Average PWC losses
3. Iterate through pieces and output lowest loss.

Computing PWC Loss Functions

!

Each discontinuity determined by 8 points in the data.

• Prior work enumerates all # $% point subsets. [Balcan et al. ’17]
• Gives a piecewise constant partition of parameters.
• Run the algorithm with one parameter from each constant interval.
• Total runtime: #($'(log $) (O($%) runs of an O($. log $) time alg.)

Empirical Insight: Significantly fewer than #($%) discontinuities in practice.
We exploit this to get faster running time.

Efficient PWC Loss Computation

! ∈ [0,1]

! ∈ [0,1]

! ∈ (½, 1]! ∈ [0,½]

! ∈ [0,½] ! ∈ (½, 1]

! values where this occursCurrent clusters

Def: Execution Tree
• Represents all possible execution paths for given input.
• Nodes are algorithm states.
• Nodes labeled by parameters where state is reached.
• Leaves are possible outputs.

Thm: Can enumerate execution tree in *(+,-) time
- = # of edges, + = # points.

Empirically, faster than *(+12 log +)

A more efficient alg. for enumerating all algorithm outputs.

!

Ha
m

m
in

g
Co

st

Clustering Subsets of MNIST

…

Example instance:Instance Distribution
• Pick 5 random digits.
• Pick 200 random images per digit (1000 in total)
• Target clustering is given by the digit classification.

!∗ = 0.857
Error = 44.1%
Improvement of ,. -.%

! = 1
Error = 47.6%

Average over 0 = 500
sampled instances

Single Linkage Complete Linkage

Another Alg. Family: Learning the Best Distance Metric
• Suppose we have more than one way to measure distances between examples.
• E.g. Captioned images: both the caption and image tell us about similarity.

• Captions show similarity between felines, but do not separate the “bobcat”.
• Images distinguish machinery from the animals.

Can we learn how to combine these metrics to get best clusterings?

“Black Cat” “Bobcat” “Roaring Cat” “Evacuator”

Algorithm Family: Learning the Metric

Advantages over other metric learning approaches:
• Optimize directly for alg. performance (instead of surrogate loss).
• Exact optimization procedures.
• Sample complexity guarantees.

• Two metrics !" and !#.
• ∀% ∈ [0,1], define

!, -, -. = 1 − % !" -, -. + %!# -, -. .
• Algorithm with parameter % runs complete linkage using !, metric.
• Learn value of % with lowest expected loss.

Execution tree gives efficient loss computation again!

Omniglot Results:
Dataset [Lake, Salakhutdinov, Tenenbaum ’15]
• Standard meta-learning dataset.
• Written characters from 50 different alphabets.
• Each character has 20 examples.
• Image of character
• Stroke data (trajectory)

Instance Distribution
• Pick random alphabet.
• Pick between 5 and 10 characters.
• Use all 20 examples of chosen characters (100 – 200 points)
• Target clusters are characters

Omniglot Results:

Averaged over 2000 Sample Instances

”Stroke” Distance:
Avg. distance between pts and other stroke.

MNIST CNN Features:

Train CNN on MNIST.
Use feature embeddings for Omniglot.
Euclidean / Cosine distance.

Conclusion

Beyond Prediction

Parameters

Social Values

Data Efficiency

? ??
?

?
? ?

??

??
• Label efficient learning algorithms for multi-class problems.
• Exploit implicit assumptions of popular supervised algorithms.

• Online learning formulations for Data-driven Algorithm Configuration.
• Boils down to online learning with piecewise Lipschitz losses.
• Dispersion-dependent regret bounds.

• Envy-freeness as a new notion of individual fairness in machine learning.
• Differentially private learning with piecewise Lipschitz losses.

New theory and practice for modern machine learning.

Thanks!

