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Modern Machine Learning

Classic machine learning: deep theory and powerful tools for learning to predict from data.
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As ML is applied in the real world, we encounter new and interesting questions.

This thesis builds on the theory and practice of ML to accommodate modern ML requirements.



Three projects expanding the predictive possibilities of ML

Improving our ability to make Making sure ML predictions ML for learning forms of
predictions with available data. don’t violate our social values. knowledge beyond prediction.
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« Disparity in cost of data. * Learning from private data. * Learning models motivated by
data-driven alg. configuration.

« Unlabeled data is very cheap, * Making consequential predictions.
labeled examples are expensive. e Using data to learn the best
 We study envy-freeness as a algorithm for specific application.
« Design & analyze label-efficient notion fairness for ML.
multi-class learning algorithms. [Balcan, Dick, Noothigattu, Procaccia, 2019]  *  Results for online learning with

piecewise Lipschitz losses.

e Differentially private learning. (Balcan, Dick, Vitercik, FOCS 2018]

[Balcan, Dick, Mansour AAAI 2017] [Balcan, Dick, Vitercik, FOCS 2018] [Balcan, Dick, Pegden, 2019]
[Balcan, Dick, Lang, 2019]



Label-Efficient Learning in Multiclass Problems

Joint work with Nina Balcan and Yishay Mansour [AAAI 2017]



Label Efficient Learning by Exploiting Multi-class Output Codes

[Balcan, Dick, Mansour AAAI 2017]

Modern ML has huge amounts of raw data
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Social Network Data

~6000 tweets per second

Labeling data is expensive

Amazon SageMaker Ground Truth

Build highly accurate training datasets using machine learning and

Charge ~$0.10 per text label.
~$0.84 per image segmentation.

reduce data labeling costs by up to 70%



Label Efficient Learning by Exploiting Multi-class Output Codes

[Balcan, Dick, Mansour AAAI 2017]

Long line of work on learning prediction rules from limited labeled data.

Semi-Supervised Active Learning
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[Blum & Mitchell ’?8; Balcan, Blum, Yalng '04; [Balcan et al. ’06; Dasgupta ‘11;
Balcan & Blum 10, Chapelle et al. “10] Hanneke 14’; Balcan & Urner ’15]

Prior work primarily focused on binary classification.

* We prove guarantees for multiclass prediction problems.
* Exploit implicit assumptions of supervised learning algorithms.



Label Efficient Learning by Exploiting Multi-class Output Codes

[Balcan, Dick, Mansour AAAI 2017] . &
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High Level Approach: cat +1 41 -1 41

* Assume an output code classifier could learn from labeled data. dog [#1 %1 -1 4

* This implies geometric structure in the underlying data. oenguin |1 =1 -1 -1

* Exploit that structure to design label-efficient learners. giraffe -1 +1 +1 -1

2
o

"
i
Q

\&
Q

Lem: If 3 consistent error correcting linear output code s.t. rows of the code matrix have
hamming distance at least d + 1, then there is a margin between all pairs of classes.
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e Careful clustering of the data has label-homogeneous clusters!
e Just need one label per cluster. /Kz

Ky
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* Our other results significantly reduce the Hamming distance requirement.
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Fairness in Machine Learning

Joint work with Nina Balcan, Ritesh Noothigattu, and Ariel Procaccia



A New Approach to Individual Fairness: Envy-free Classification

[Balcan, Dick, Noothigattu, Procaccia, 2019]

E.g., Advertisements shown by search engines.

ML is making predictions about us.
Want guarantees about fair treatment.
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Sweeney [‘13] found that searches for
names showed ads suggestive of arrest
records more often for some racial groups.

Datta et al. [‘15] found different
employment ads shown to men and
women with identical search histories.



A New Approach to Individual Fairness: Envy-free Classification

[Balcan, Dick, Noothigattu, Procaccia, 2019]

Group Fairness: Individual Fairness:
Subgroups treated fairly on average. Fairness for every individual.
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[Luong et al. ‘11; Zemel et al. ‘13;

) [Dwork et al. ‘12; Joseph et al. ‘16]
Hardt et al. 16; Zafar et al. '16]



A New Approach to Individual Fairness: Envy-free Classification

[Balcan, Dick, Noothigattu, Procaccia, 2019]

* Import Envy-freeness from fair division [Foley ‘67; Varian ‘74].
 The gold standard for:

* cake cutting [Robertson & Webb 98; Procaccia ‘13],

* Rent division [Su ‘99; Gal et al. “17].

Def: Classifier h is envy-free when no individual prefers prediction made for another.

* Preferences can be estimated from data!
* Works with heterogeneous preferences.
* Main result: generalization guarantees

Thm: For family H of random classifiers, any i € H that is EF on sample of O(D /y?) is
(v, v)-approximately EF on the distribution.

H contains random mixtures of deterministic classifiers.
D = m - NDim(G), m = mixture size, NDim(( ) = complexity of fns being mixed.



New Learning Formulations
Motivated by
Data-driven Algorithm Configuration

Based on joint work with

* Nina Balcan and Ellen Vitercik [FOCS 2018]
* Nina Balcan and Wesley Pegden [2019]

* Nina Balcan and Manuel Lang [2019]



Data-driven Algorithm Configuration

Classic Algorithm Design: Design algorithms for the worst-case.

 Some domains have always-efficient optimal algorithms

 Many important domains are hard in worst case:
* Clustering, subset selection, auction design, etc.

III

* “typical” applications aren’t too hard. | Jow Kumacks - v TRoos

Data Driven Algorithm Design: Use data to design/fine-tune algorithms.
* Repeatedly solve problems from the same application.

e Use historic problem instances to find the best algorithm.



Data-driven Algorithm Configuration

Data Driven Algorithm Design Approach:
* Fix a parameterized family of algorithms.
* Different algs from family work better for different applications.

* Learn best alg/parameters from example problems.

Common in Practice:

* Artificial Intelligence: E.g. [Xu, Hutter, Hoos, Leyton-Brown, JAIR ‘08]
 Computational Biology: E.g. [DeBlasio, Kececioglu, ‘18]

e Game Theory: E.g. [Likhodedov & Sandholm, ‘04]

Focus on empirical performance.

Dan Delawo - John Kecedoghy

Parameter
Advising

for Multiple
Sequence
Alignment




Example: Hierarchical Clustering

Given a collection of objects, organize them into a hierarchical clustering.
E.g., Clustering news articles by topic

All Topics

EAS

Sports Technology
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Or clustering images by content.
Or vacation destinations by type of attraction.




Example: Hierarchical Clustering

Linkage based clustering
1. Start with each object in its own cluster
2. Repeatedly merge “closest” pair of clusters

Different definitions of “closest” give different algorithms.

Single Linkage: Dnyin(4,B) = (i d(a,b)
Complete Linkage: Dyax(A,B) = (A d(a,b)

p-Linkage: For p € [0,1] D,(A,B) = (1 = p)Dpin(4,B) + p - Dax(4, B)
[Balcan et al. 17]



Example: Greedy Knapsack Algorithm

Problem Instance:

e @Givenn items

[
. <>
* item i hasvalue v; and size s; .
 aknapsack with capacity K
) )

Find the most valuable subset of items that fits.

Algorithm: (Parameter p = 0) [Gupta & Roughgarden ’16]

Add items in decreasing order of score, (i) = vi/sip.




ML Theory for Data Driven Algorithm Configuration
First ML-style guarantees are recent.

Learning-Theoretic Foundations of Algorithm Configuration for
Combinatorial Partitioning Problems®

A PAC APPROACH TO APPLICATION-SPECIFIC
ALGORITHM SELECTION*

RISHI GUPTA' AND TIM ROUGHGARDEN'

[ITCS 16, SICOMP’17]

Maria-Florina Balcan Vaishnavh Nagarajan Ellen Vitercik Colin White

[COLT “17]

Learning to Branch” Data-Driven Clustering via Parameterized Lloyd’s Families*

Maria-Florina Balcan Travis Dick Tuomas Sandholm Ellen Vitercik

[ICML ‘18]

Maria-Florina Balcan Travis Dick Colin White

[NeurlPS ‘18]
Prior work focuses on the batch setting.

Sample of i.i.d. problem instances

"/—\‘- s N ~
\ .‘ % Choose algorithm parameter
/ \ o KR to minimize expected cost.
Y
/ \ .

Application Specific
Problem Distribution

In this thesis: ML for data driven combinatorial alg. config in online and private settings.



Key Structure in Combinatorial Alg. Configuration

For one problem instance, cost/loss is piecewise Lipschitz fn of parameters.

loss

N\

C=—0

p



Piecewise Lipschitz Fns in Knapsack

Problem Instance:

* Givenn items

* item i hasvalue v; and size s;
 aknapsack with capacity K

Find the most valuable subset of items that fits.

Algorithm: (Parameter p = 0)

Add items in decreasing order of score, (i) = vi/sip.

[Gupta & Roughgarden ’16]

Lem: Value is piecewise constant in p.
* Only item order matters.
* Any item pair changes order at one value of p

s
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Order of items fixed.



Piecewise Lipschitz Fns in p-Linkage

* Balcanetal. ["17] show output of p-Linkage is piecewise constant.

* Only distance ordering on possible merges matters.

 For any pair of pair of merges (4, A") and (B, B"), order changes only for one value of p.
* Distances between (4,4"), (B, B") depend on 8 points = 0(n®) discontinuities.

= &

Any loss that only depends on output is piecewise constant!

p €10,1] <€ : : :



Online Learning with Piecewise Lipschitz Losses

Learning protocol:

Foreachroundt =1, .., T:

1. Learner chooses p; € C  R€.

2. Adversary chooses piecewise L-Lipschitz loss £;: C — R.
3. Learnerincurs cost Z:(p;)

4. Learner gets feedback on ;.

* Full-information: Observe entire loss function #;.

* Bandit: Observe just 7:(p;) € R.

* Semi-bandit: Observe £ (p) for all p in subset A; C C.

Goal: Minimize regret = Y.._, £, (p;) — min Yi_.€.(p).
pE

Meaningful Learning: Regret sublinearin T.



Why isn’t this solved already?

Existing bounds are for more structured settings [e.qg., Cesa-Bianchi & Lugosi ‘06, Bubeck ’11]

Prediction with (finite) expert advice. Finite-armed Bandits Convex Fns Globally Lipschitz Fns
== t * [Kleinberg et al. ‘08]
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Under full-info, Regret < O (+/T xproblem dependent terms).

Main Challenge: When the losses have discontinuities, cannot achieve sublinear regret!

el

Simple adversary ensures ()(T') regret. Need additional structure!



" 1 O hides log terms and application-specific terms
Dispersion ; Pricationsp

* Discontinuities only problematic if concentrated.
* We introduce dispersion for measuring concentration.
* Improved version of definition from Balcan, Dick, Vitercik [FOCS 2018].

Def: Function ¥, ¢, ... are [-dispersed if ¥ times T" € N and V radiuses ¢ > T-5,
expected # of non-Lipschitz fns on worst ball of radius € is O(Te). l.e.,
(BDP ‘19] ]E[maxp {1 <t < T : ¥, not Lipschitz on B(p, E)}|] < 0(Te)

“In balls of radius €, encounter non-Lipschitz functions at rate O (¢)”
(as long as € is not too small)

* Expectation over random losses (e.g., if smoothed)
* Larger [ is stronger.




The Sum of Disperse Functions

Let £, 7, ... be PWL functions and plot their sum Y./ #;

Not disperse Disperse

AU V4
/:\1:::\.[-|:|-|-|-|-]\./:::|/:\ \/ \|\|:

Many discontinuities within interval Few boundaries within interval



Dispersion for p-Linkage

Study smoothed adversaries — small amount of noise added to problems.

Thm: If V' (0, o) noise added to pairwise distances every round. Then after T rounds

» Expected non-Lipschitz loss fns on worst e-interval is O(Ten®/c? + /T log(Tn)).
 [-dispersed for [ = 1/2. [BDP “19]

Intuition:

* Each loss fn has 0(n®) discontinuities.

* Noise in distances = noise in discontinuity locations.
 Don’t expect many to land in an interval of width €.

« /T term accounts for taking the worst interval.

Similar arguments hold for many other domains.



Full Information Regret Bounds

Continuous Multiplicative Weights [cesa-Bianchi & Lugosi '06]

Algorithm: (Parameter 4 > 0)
At round t, sample p; from p,(p) < exp(—AXLZ1 £.(p)).

Thm:If /4,¢,,... C — |0,1] are piecewise L-Lipschitz and [-dispersed, then VT,
[BDV, FOCS 2018] T N
E [z 2.(p;) — et(p*)] < 0(VTd + T1P).
t=1

«  0(/Td) optimal for globally Lipschitz functions.
* Regret due to discontinuities is O (T*~7).
* Bound improves as 5 grows until 5 = 1/2.

Theorem: (p-Linkage) Add V' (0, o) to pairwise distances. Then after T rounds
Regret < 0(y/T log(nT /o))




Bandit-feedback Regret Bounds

Discretization Algorithm:

Algorithm: (Parametersr > 0, 4 > 0
Let p?, ..., p"¥ be an r-net for C.
Use EXP3 to choose p; € {p*, ..., o} [aver et al. 701]

Thm:If £4,¢,,...:C — |0,1] are piecewise L-Lipschitz and [-dispersed, then

: (. d+1
IE [z £e(pe) — ft(p*)] <0 (Td+2(3d + 1)+ Tl—ﬁ) |
[BDV, FOCS 2018] t=1

d+1
 Ta+2 is optimal exponent for globally Lipschitz functions. [Kleinberg et al. 08]

* Bound improves as 5 grows until 5 = 1/(d + 2).

Thm: (p-Linkage) Add V' (0, o) to pairwise distances. Then after T rounds
Regret < 0(n8T?%/3/5?)




Feedback in Algorithm Configuration

Most domains provide full-information feedback.

Algorithm Output

@
o0
@) @
Problem Instance o ® @ | — Evaluate ¥(p)
® oo ©
"Q @)
o
o0 - oo
"' ® ~ Run with parameter o °
o ~ ® © @ | — Evaluate #(p")
oo ©
@)

* Full-info feedback can be expensive: many runs of algorithm.
* Bandit feedback is more efficient, but has worse regret bounds.

* Next: we can sometimes get the best of both by exploiting extra structure /8or “19].



Extra Structure: Semi-bandit feedback

Key insight from many implementations:
* Running algorithm once reveals loss for a range of parameters.
e Often an entire piece of piecewise Lipschitz loss!

* E.g.
O
O
e o
O3
@
0 ®e¢
%
)
Linkage-based Initialization for Greedy Variable selection in

Clustering k-means clustering Knapsack Branch and Bound



Semi-bandit Feedback

Def: (Semi-bandit feedback)
At time ¢, there is a partition Agt), ...,A,(\? of C.
When learner plays p; € Al@ they observe Agt) and Z;(p) forall p € Al@.

Loss
A

t) . i
47 @ ? AW
. Pt

Ay C




Learning with Semi-bandit Feedback

Continuous version of EXP3-SET algorithm of [Alon, Cesa-Bianchi, Gentile, Mannor, Mansour, Shamir ‘17]

Algorithm: Loss
Use importance weighting to estimate complete loss E

- [{p € A} .

te(p) = te(p)

\ Pt (At) I » NG
Scales loss by 1/(probability of observing it). Pt
: T : ~ - e ()

Run continuous multiplicative weights on £, ¢, ... A3 C

Thm:If /4,¢,,...: C — |0,1] are piecewise L-Lipschitz, [-dispersed, and < M feedback sets,
[BDP ‘19] T }
E [2 2.(p;) — ft(p*)] < 0(VdTM + T17F).
t=1




Linkage Clustering with Semi-bandit Feedback

* From asingle run of p-linkage, we can get semi-bandit feedback.
* A bit of extra computation to keep track of nearest discontinuities to p.
* Number of feedback setsis M = 0(n®).

Thm: (p-Linkage) Add V' (0, o) to pairwise distances. Then after T rounds EXP3-SET satisfies:
Regret < O (n4\/T log(Tn/a))

/T regret, like full-info.
* Run algorithm once per round, like bandit feedback.



Algorithm Configuration Experiments

Joint work with Nina Balcan & Manuel Lang



Experiments in the Batch Setting

Batch setting:
* Distribution D over problems.
* Given i.i.d. sample from D, find algorithm with lowest expected error on D.

Sample of i.i.d. clustering tasks

—

o %l O Choose algorithm
ol ...| @ - parameter to minimize

expected cost.

Two Questions:
1. Sample Complexity: How many samples do we need to see to find nearly optimal parameter.
Computational Complexity: How can we efficiently find the best parameter?



Empirical Risk Minimization for Linkage Clustering
Cluster distance fn: D,(A,B) = (1 — p)Dyin(A,B) + p - Dypax (A, B)

For each instance, Hamming error is piecewise constant

o0
® O [
0 @ @
._..—O :
\ | p Algorithm:
0% 1. Compute PWC loss for each instance.
[..."‘ (i.e., discontinuities and values)
O o—_9
'y e 2. Average PWC losses
P p 3. lterate through pieces and output lowest loss.
)
Q
.. ® ‘._.._. O—:_.
... o—0




Computing PWC Loss Functions

Each discontinuity determined by 8 points in the data.

* Prior work enumerates all O(n®) point subsets. [Balcan et al.17]
* Gives a piecewise constant partition of parameters.
* Run the algorithm with one parameter from each constant interval.

e Total runtime: O (n'Ylogn) (0(n®) runs of an O(n?logn) time alg.)

Empirical Insight: Significantly fewer than 0 (n®) discontinuities in practice.

We exploit this to get faster running time.



Efficient PWC Loss Computation

A more efficient alg. for enumerating all algorithm outputs.
Def: Execution Tree

* Represents all possible execution paths for given input. Current clusters p values where this occurs

 Nodes are algorithm states. \ /

* Nodes labeled by parameters where state is reached. SRS :
* Leaves are possible outputs.

_______________

Thm: Can enumerate execution tree in O (n*E) time
E = # of edges, n = # points.

_______________

_______________

Empirically, faster than O (n'° logn)

_______________

_______________

_______________

_______________

_______________

_______________

_______________

_______________



Clustering Subsets of MNIST

Instance Distribution
* Pick 5 random digits.

* Pick random images per digit (

Average over n = 500
sampled instances

0.80

in total)
* Target clustering is given by the digit classification.

Example instance:
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Hamming Cost

0.40

0.65 | N
P I |

p=1
Error = 47.6%

p* = 0.857
Error = 44.1%

0.0
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Another Alg. Family: Learning the Best Distance Metric

* Suppose we have more than one way to measure distances between examples.
* E.g. Captioned images: both the caption and image tell us about similarity.

“Black Cat” “Bobcat” “Roaring Cat” “Evacuator”

e Captions show similarity between felines, but do not separate the “bobcat”.
* Images distinguish machinery from the animals.

Can we learn how to combine these metrics to get best clusterings?



Algorithm Family: Learning the Metric

* Two metrics dy and d;.
V[ € 0,1], define

dg(x,x’) = (1 = B)do(x,x") + Bdy(x,x").
Algorithm with parameter /5 runs complete linkage using dz metric.
Learn value of [ with lowest expected loss.

Execution tree gives efficient loss computation again!

Advantages over other metric learning approaches:

* Optimize directly for alg. performance (instead of surrogate loss).
* Exact optimization procedures.

 Sample complexity guarantees.



Omniglot Results:

Dataset [Lake, Salakhutdinov, Tenenbaum “15]
* Standard meta-learning dataset.

* Written characters from 50 different alphabets.
* Each character has 20 examples.

* Image of character

» Stroke data (trajectory)

TINTT™ 1 h fot
S ONY T 1w g ¢
YAV NI N (N
TIEBEDo 30 3
I EBEIFE UL I wga
I BHd LI Pw

Instance Distribution

* Pick random alphabet.

* Pick between 5 and 10 characters.

e Use all 20 examples of chosen characters (100 — 200 points)
* Target clusters are characters




Omniglot Results:

”Stroke” Distance:

Avg. distance between pts and other stroke.
Averaged over 2000 Sample Instances

— 0.48 -
\ 0.46 -
0.44 -
MNIST CNN Features: @
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- CcnNNE-cnnC
Use feature embeddings for Omniglot. - - - . . .
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CO N C‘ uSion New theory and practice for modern machine learning.
Data Efficiency

0 ?
® _? ‘a?
?; ? * Label efficient learning algorithms for multi-class problem:s.
' ?.? “ ?? * Exploit implicit assumptions of popular supervised algorithms.
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Social Values

:/ E)L * Envy-freeness as a new notion of individual fairness in machine learning.
) « Differentially private learning with piecewise Lipschitz losses.
(& @& yp g P P

Beyond Prediction

* Online learning formulations for Data-driven Algorithm Configuration.
Parameters * Boils down to online learning with piecewise Lipschitz losses.
JOC * Dispersion-dependent regret bounds.




Thanks!



