
Machine Learning: Social Values,
Data Efficiency, and Beyond Prediction

Travis Dick
Jan. 29, 2019

The Goal of my Research

Extend the theory and practice of machine learning to accommodate new requirements
emerging from its use in real-world contexts.

Beyond Prediction

Parameters

0.1 0.3 0.2 0.1 1.2

Social ValuesData Efficiency

? ?
?

?

?
? ?

?
?

?

??

The Goal of My Research

Beyond Prediction

Parameters

Social Values

Data Efficiency

? ??
?

?
? ?

??

?? • There is disparity in the cost and availability of different types of data.
• Need to make the best use of cheap and abundant data.
• We focus on using unlabeled data in multi-class classification.

• Many learners learn to make predictions (e.g., medical diagnosis).
• Important settings where learner’s output is not a prediction rule.
• We’ll look at algorithm configuration / parameter tuning.

• Learning systems now regularly interact with us.
• Learning from personal data, making predictions about our behavior.
• We want these systems to uphold our social values (e.g. privacy, fairness)

[Balcan, Dick, Mansour; AAAI 2017]

[Balcan, Dick, Vitercik; FOCS 2018]
[Balcan, Dick, Vitercik; ICML 2018]
[Balcan, Dick, White; NeurIPS 2018]

[Balcan, Dick, Liang, Mou, Zhang; ICML 2017]
[Balcan, Dick, Procaccia, Noothigattu; 2019]

Outline

1. Online and Private Optimization of Piecewise
Lipschitz Functions

2. Envy-free Classification

Beyond Prediction

Parameters

Social Values

Social Values

Joint with Nina Balcan and Ellen Vitercik

Joint with Nina Balcan, Ariel Procaccia, Ritesh Noothigattu

My related work on algorithm configuration.
Joint with Nina Balcan, Colin White, and Ellen Vitercik

! "
= 0

!" = 1

! &
= 0 !& = 1

Clustering Branch & Bound

Part 1:
Piecewise Lipschitz Optimization

Joint work with Nina Balcan and Ellen Vitercik [FOCS 2018]

Parameters

0.1 0.3 0.2 0.1 1.2
!

va
lu

e

Motivation: Data-driven Algorithm Configuration
Classic Algorithm Design: Design algorithms for the worst-case.

• Some domains have always-efficient optimal
algorithms

• Many important domains do not:
• Clustering, subset selection, auction design,

etc.

Data Driven Algorithm Design: Use learning and data to design/fine-tune algorithms

• Suitable when we will repeatedly solve problems from the same domain.

• We will see that piecewise Lipschitz optimization arises naturally in this setting.

Motivation: Data-driven Algorithm Configuration
Data Driven Algorithm Design Approach:
• Design a large parameterized family of methods.
• Different methods will work better for different settings.
• Learn the best method/parameters for a specific application.

Prior Work is Mostly Empirical:
• Artificial Intelligence: E.g. [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]
• Computational Biology: E.g. [DeBlasio-Kececioglu, 2018]
• Game Theory: E.g. [Likhodedov and Sandholm, 2004]

This Talk: Procedures with formal guarantees

Data-Driven Algorithm Configuration

Goal:
• Automatically find the best parameters for a specific application domain.
• Algorithm is run repeatedly, historic instances are training data.
• Want provable guarantees for online and private settings.

…!" !#
Problem instances from specific application.

Algorithm

Parameters

0.1 0.3 0.2 0.1 1.2

!$

Output

Example: Greedy Knapsack Algorithm

Add items in decreasing order of score& ' =)*/,*&.
Algorithm: (Parameter - ≥ 0)

• Given 0 items
• item ' has value)* and size ,*
• a knapsack with capacity 1
Find the most valuable subset of items that fits.

Problem Instance:

Observation: For one instance, total value is
piecewise constant in -.

-

va
lu

e

Order of items fixed.

[Gupta & Roughgarden ’16]

For each round ! = 1,… , &:
1. Learner chooses point '(∈ * ⊂ ,-.
2. Adversary chooses piecewise .-Lipschitz function /(: * → ,.
3. Learner gets reward /('(
4. Full information: Learner observes entire function /(
5. Bandit information: Learner only observes the scalar /(('()

Learning protocol:

Goal: Minimize regret = max
8∈9

∑(;<= /((') − ∑(;<= /('(.

Online Piecewise Lipschitz Optimization

Meaningful Learning: Regret sublinear in &à optimal average per round utility

More generally: utility is a piecewise Lipschitz function of parameters.

Main Challenge: Utility functions have discontinuities – can’t use existing techniques.

A Mean Adversary
Fact: There exists an adversary choosing piecewise constant

functions from [0,1] to [0,1] such that every full information
online algorithm has linear regret.

At round &, adversary chooses a threshold '(and flips a coin to choose either

0 1'(0 1'(

or

Every learner has expected utility of ½ per round à expected total utility */2.

Let -(= {0 ∈ 0,1 ∶ 34 0 = 1 for all 1 ≤ 6 ≤ &}
Set '(to be midpoint of -(89 àmax

=
>= 0 = *.

Regret = */2.

Dispersion

Def: Functions !" ⋅ , … , !&(⋅) are),* -dispersed at point + if the ℓ--ball . /,0
contains discontinuities for at most 1 of !" … , !&.

The mean adversary concentrated discontinuities near /∗. Even very near points had low utility!

3

/ 0

• 4 functions !", !-, !4, !5
• Each colored line is a discontinuity of one function.
• Ball of radius 0 about / contains 2 discontinuities.
à (0, 2)-dispersed at /.

0

1Functions will satisfy a range of dispersion parameters:

The Sum of Disperse Functions

Not disperse

Many boundaries within interval

Let !",… , !% be PWL functions and plot their sum ∑' !'

Disperse

Few boundaries within interval

Full Information Regret Bounds
We analyze the classic Exponentially Weighted Forecaster [Cesa-Bianchi & Lugosi ’06]

Algorithm: (Parameter ! > 0)
At round $, sample %& from '& % ∝ exp(! ∑./0&10 2.(%)).

Theorem: If 20,… , 26: 8 → [0,1] are piecewise =-Lipschitz and (>, ?)-dispersed at %∗,

EWF has regret A BC log 0
G
+ B=> + ? .

When is this a good bound? For > = 1/(= B) and ? = KA(B) regret is KA(BC).

Intuition:
• The ball L(%∗, >) has utility at least AMB − B=> − ?.
• EWF can compete with L(%∗, >) when its volume is non-negligible.
Note: Don’t need to know (>, ?) to run algorithm.

%∗

(We essentially achieve these values in all of our applications)

Smoothed Adversaries and Dispersion
Consider any adversary chooses threshold functions !",… , !%: 0,1 → [0,1]:

0 1,

Location , ∈ [0,1]
Orientation . ∈ {±1}

Location , corrupted by adding 2~4(0, 67).

0 1, + 2 ,

Fix any interval : = [<, < + =].
Expected number of discontinuities in : is at most > ⋅ =/(6 2B).
Uniform convergence à all width = intervals have C = DE(>=/6 + >) discontinuities w.h.p.

Lemma: For any = > 0, the functions !",… , !% are (=, C)-dispersed for C = DE
%G

H
+ >

w.h.p. For any I ≥ "

7
, we can take = = >KL"6 and C = DE(>K).

Smoothed Adversaries and Dispersion
More generally: adversary is unable to precisely pick some
problem parameters (e.g. item values in knapsack).

!

va
lu

e
Challenges:
• Each utility function has multiple dependent discontinuities.
• Distribution of discontinuity location depends on setting.
• How do we generalize to multiple dimensions?

! = ln %&/%(
ln(*&/*()

Dispersion decouples problem-specific smoothness arguments from regret bounds and
private utility guarantees.

More Results from Dispersion
Bandit online optimization of piecewise Lipschitz functions:
• Learner only observes the scalar !"($") each round.

• Dispersion with & ≈ 1/*+/(,-.) and / ≈ *
012
013 implies regret 45 *

012
013 63, + 9 .

• Optimal exponent on * – other factors may be improvable.
Verify Dispersion for Algorithm Configuration
• Typically, smoothed adversaries choose dispersed functions.
• Greedy algorithms for knapsack and max-weight independent set.
• SDP rounding schemes for integer quadratic programs.

⋮

Goal: Approximately maximize the average with strong
privacy guarantees for each individual.

• No algorithm has non-trivial utility in the worst-case.
• Matching upper and lower bounds from dispersion.

Differentially Private Optimization:

Future Work

!∗
Better (Semi)Bandit Algorithms
• Current algorithm discretizes # using a $-net.
• Exponential running time in the dimension.
• Does not adapt to optimal $, & -parameters.

• Exploit partial feedback (often observe an entire piece of '()

More Applications
• Derive dispersion for new algorithms (e.g., Initialization of Lloyd’s method)
• Applications beyond algorithm configuration

Tidying Up and Easier Tools
• Current definition is a bit complicated with many “gotchas”.
• Working on getting crisp and intuitive definitions and better tools for

verifying dispersion in practice.

Other Algorithm Configuration Work
Branch & Bound for Mixed Integer

Programming
[Balcan, Dick, Vitercik; ICML 2018]

Initialization Procedures for Center-
Based Clustering

[Balcan, Dick, White; NeurIPS 2018]

• Uniform convergence guarantees in the i.i.d. setting (problems drawn from a distribution)
• Large-scale experiments carried out on 256 vCPUs on AWS EC2.

• E.g., for B&B we modify IBM’s CPLEX using callbacks to change the “variable selection
policy” and implement our tuning algorithm.

CATS ArbitraryClusteringLinear Separators

CPLEX Tuning Results:
• X-axis is B&B parameter.
• Y-axis is tree-size (≈ running time).
• Best parameters vary significantly

across tasks.

Interpolating between Single,
Complete, and Average Linkage

[Balcan, Dick, Lang; 2019]
[Balcan, Nagarajan, Vitercik,

White; COLT 2017]

Social Values

Part 2:
Envy-free Classification

Joint work with Nina Balcan, Ariel Procaccia, and Ritesh Noothigattu [Ongoing]

Envy-freeness

Envy-freeness is the gold standard of fairness for fair division.

E.g.

cake cutting chore assignment

Idea: Assignment is envy free if no one prefers the assignment of anyone else over their own.

Envy-Freeness in Machine Learning
Idea: A classifier is envy-free if no individual prefers the prediction/assignment of another.

Key Properties:
1. Provides fairness guarantees to individuals.

Group Fairness Individual Fairness

2. It is suitable when there are many outcomes and heterogeneous preferences.

vs

Being released on bail.

Getting a loan.

Advertisement Preferences Job Listings

Problem Setting
• We want to use ML to learn to assign outcomes to individuals.
• For example, deciding which advertisements to show in order to maximize revenue.

• Space ! of individuals, space " of outcomes.
• Assignment rule is a classifier ℎ:! → ".
• Two objectives:

1. Minimize expected loss (e.g., maximize revenue with advertisements)
2. Treat people fairly (what does this mean?)

• We import the notion of envy freeness from fair division.
• Suitable when there are many outcomes and heterogeneous preferences.
• Provides fairness guarantees to individuals, rather than groups.

Envy-free Classifiers

• Given a utility function !:#×% → [0,1] measuring individual preferences.
• A classifier ℎ:# → Δ % is ., / -envy free with respect to ! and 0 if:

Pr
3,34∼0

! 6, ℎ 6 < ! 6, ℎ 68 − / ≤ . .

• . = / = 0: every individual likes their assignment as much as anyone else’s.
• . > 0: A small number of pairs of individuals are allowed to be envious.
• / > 0: A small amount of envy is tolerated.

(Δ(%) is the set of distributions on %)

Example: Two individuals and two outcomes

• (0,0)-EF requires ℎ , ≥ ℎ , and ℎ , ≥ ℎ , .

1 0
0 1Utilities:

Randomized Classifiers
• Envy-freeness is a very strong requirement on deterministic classifiers:

Lem: Every deterministic (0,0)-EF map is of the form ℎ " = argmax)∈+,-(", 0) where
2′ is a subset of the classes 2 (breaking ties arbitrarily).

• We consider randomized classifiers (that assign distributions to individuals) since they
have a lot more freedom.

• Better tradeoffs between fairness and accuracy.
• Can construct examples where best randomized (0,0)-EF classifier has arbitrary

multiplicative improvement over best deterministic (0,0)-EF classifier.

Main Question: Can we learn EF classifiers?

• If a classifier is EF on a sample of individuals, does this imply that it will remain EF on the
underlying distribution?

• Following classic learning theory results, we assume the learner chooses an assignment
rule from some class ℋ = {ℎ:& → Δ) } of low complexity.

• Main challenge: no known complexity measure applicable for distribution-valued outputs.

• VC-dimension works for binary outputs.
• Pseudo-dimension and Rademacher complexity work for a single real value output.
• Natarajan dimension works for multi-class outputs.

Random Mixtures of Deterministic Classifiers
• No existing natural notion of complexity for distribution-valued outputs…
• Idea: Many randomized classifiers can be expressed as mixtures of deterministic classifiers.

Def: A class ! = {ℎ: & → Δ) } is an +-mixture of a deterministic class , = {-: & →)} if
for each ℎ ∈ ! there exists / functions -0,… , -3 ∈ , and mixing weights
40,… , 43 ∈ Δ3 such that Pr ℎ 7 = 8 = ∑: 4:1{-: 7 = 8} .

ℎ randomly picks -: with probability 4: and outputs its classification of 7.

If , has low Natarajan dimension, and ! is an /-mixture of ,, then we should expect envy-
freeness to generalize for !.

ℎ 7
-0(7)

-3(7)
⋮

40

43

Envy-Freeness Generalizes for Random Mixtures

Thm: Let ! = ℎ: % → Δ (be an)-mixture of * = {,: % → (} and suppose the Natarajan
dimension of * is .. If / = { 01, 013 , … , 05, 053 } is an iid sample of 6 = 78 9:;

<: pairs

from =, then w.h.p. every ℎ ∈ ! that is (@, A)-EF on / will be (@ + 7E, A + 4E)-EF on =.

Idea:
• Approximate ! by a finite class H! (the size will depend on) and .).
• Can get generalization for H! from Hoeffding + Union bound.
• For each ℎ, let Iℎ be its approximation in H!.
• The classifiers ℎ and Iℎ behave similarly on = and sufficiently large samples.

ℎ on / Iℎ on /

Iℎ on =ℎ on =

• If ℎ is EF on / then Iℎ is too.
• Iℎ belongs to a finite class, so Iℎ is also EF on =.
• If Iℎ is EF on =, then ℎ is too.

EF parameters degrade along each edge.

Future Work

ERM Algorithms: Algorithms for efficiently finding low-envy low-loss classifiers.

Improved Dependence on ! (number of classifiers mixed):
• Current generalization bound is "# $%&

'& , but it should be "# $
'& .

New Fairness Notions:
• I’m particularly interested in looking to the humanities and other disciplines where

fairness has been important.

Other Work
• Label-efficient multi-class learning.

h1

h2h3

K1 K2

K3

K4

[Balcan, Dick, Mansour; AAAI 2017]

• Differentially private !-means and !-median clustering
[Balcan, Dick, Liang, Mou, Zhang; ICML 2017]

Active cube

Inactive cube

Candidate centers

Data points

• Differentially private covariance estimation
[Amin, Dick, Kulesza, Medina, Vassilvitskii; 2018]

"#∗

• Partitioning schemes for communication-efficient distributed learning.
[Dick, Li, Pillutla, White, Balcan, Smola; AIStats 2017]

1st Partition

2nd Partition

!#& Partition

…
Data

Thanks!

