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The Goal of my Research

Extend the theory and practice of machine learning to accommodate new requirements 
emerging from its use in real-world contexts.
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?? • There is disparity in the cost and availability of different types of data.
• Need to make the best use of cheap and abundant data.
• We focus on using unlabeled data in multi-class classification.

• Many learners learn to make predictions (e.g., medical diagnosis).
• Important settings where learner’s output is not a prediction rule.
• We’ll look at algorithm configuration / parameter tuning.

• Learning systems now regularly interact with us.
• Learning from personal data, making predictions about our behavior.
• We want these systems to uphold our social values (e.g. privacy, fairness)

[Balcan, Dick, Mansour; AAAI 2017]

[Balcan, Dick, Vitercik; FOCS 2018]
[Balcan, Dick, Vitercik; ICML 2018]
[Balcan, Dick, White; NeurIPS 2018]

[Balcan, Dick, Liang, Mou, Zhang; ICML 2017]
[Balcan, Dick, Procaccia, Noothigattu; 2019]



Outline

1. Online and Private Optimization of Piecewise 
Lipschitz Functions

2. Envy-free Classification
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Joint with Nina Balcan, Ariel Procaccia, Ritesh Noothigattu

My related work on algorithm configuration.
Joint with Nina Balcan, Colin White, and Ellen Vitercik
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Part 1:
Piecewise Lipschitz Optimization

Joint work with Nina Balcan and Ellen Vitercik [FOCS 2018]
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Motivation: Data-driven Algorithm Configuration
Classic Algorithm Design: Design algorithms for the worst-case.

• Some domains have always-efficient optimal 
algorithms

• Many important domains do not:
• Clustering, subset selection, auction design, 

etc.

Data Driven Algorithm Design: Use learning and data to design/fine-tune algorithms

• Suitable when we will repeatedly solve problems from the same domain.

• We will see that piecewise Lipschitz optimization arises naturally in this setting.



Motivation: Data-driven Algorithm Configuration
Data Driven Algorithm Design Approach:
• Design a large parameterized family of methods.
• Different methods will work better for different settings.
• Learn the best method/parameters for a specific application.

Prior Work is Mostly Empirical:
• Artificial Intelligence: E.g. [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]
• Computational Biology: E.g. [DeBlasio-Kececioglu, 2018]
• Game Theory: E.g. [Likhodedov and Sandholm, 2004]

This Talk: Procedures with formal guarantees



Data-Driven Algorithm Configuration

Goal:
• Automatically find the best parameters for a specific application domain.
• Algorithm is run repeatedly, historic instances are training data.
• Want provable guarantees for online and private settings.
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Problem instances from specific application.
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Example: Greedy Knapsack Algorithm

Add items in decreasing order of score& ' = )*/,*&.
Algorithm: (Parameter - ≥ 0)

• Given 0 items
• item ' has value )* and size ,*
• a knapsack with capacity 1
Find the most valuable subset of items that fits.

Problem Instance:

Observation: For one instance, total value is 
piecewise constant in -.

-
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Order of items fixed.

[Gupta & Roughgarden ’16]



For each round ! = 1,… , &:
1. Learner chooses point '( ∈ * ⊂ ,-.
2. Adversary chooses piecewise .-Lipschitz function /(: * → ,.
3. Learner gets reward /( '(
4. Full information: Learner observes entire function /(
5. Bandit information: Learner only observes the scalar /(('()

Learning protocol:

Goal: Minimize regret = max
8∈9

∑(;<= /((') − ∑(;<= /( '( .

Online Piecewise Lipschitz Optimization

Meaningful Learning: Regret sublinear in &à optimal average per round utility 

More generally: utility is a piecewise Lipschitz function of parameters.

Main Challenge: Utility functions have discontinuities – can’t use existing techniques.



A Mean Adversary
Fact: There exists an adversary choosing piecewise constant 

functions from [0,1] to [0,1] such that every full information 
online algorithm has linear regret.

At round &, adversary chooses a threshold '( and flips a coin to choose either

0 1'(0 1'(

or

Every learner has expected utility of ½ per round à expected total utility */2.

Let -( = {0 ∈ 0,1 ∶ 34 0 = 1 for all 1 ≤ 6 ≤ &}
Set '( to be midpoint of -(89 àmax

=
>= 0 = *.

Regret = */2.



Dispersion

Def: Functions !" ⋅ , … , !&(⋅) are ),* -dispersed at point + if the ℓ--ball . /,0
contains discontinuities for at most 1 of !" … , !&.

The mean adversary concentrated discontinuities near /∗. Even very near points had low utility!

3

/ 0

• 4 functions !", !-, !4, !5
• Each colored line is a discontinuity of one function.
• Ball of radius 0 about / contains 2 discontinuities.
à (0, 2)-dispersed at /.

0

1Functions will satisfy a range of dispersion parameters:



The Sum of Disperse Functions

Not disperse

Many boundaries within interval

Let !",… , !% be PWL functions and plot their sum ∑' !'

Disperse

Few boundaries within interval



Full Information Regret Bounds
We analyze the classic Exponentially Weighted Forecaster [Cesa-Bianchi & Lugosi ’06]

Algorithm: (Parameter ! > 0)
At round $, sample %& from '& % ∝ exp(! ∑./0&10 2.(%)).

Theorem: If 20,… , 26: 8 → [0,1] are piecewise =-Lipschitz and  (>, ?)-dispersed at %∗, 

EWF has regret A BC log 0
G
+ B=> + ? .

When is this a good bound? For > = 1/(= B) and ? = KA( B) regret is KA( BC ).

Intuition: 
• The ball L(%∗, >) has utility at least AMB − B=> − ?.
• EWF can compete with L(%∗, >) when its volume is non-negligible.
Note: Don’t need to know (>, ?) to run algorithm.

%∗

(We essentially achieve these values in all of our applications)



Smoothed Adversaries and Dispersion
Consider any adversary chooses threshold functions !",… , !%: 0,1 → [0,1]:

0 1,

Location , ∈ [0,1]
Orientation . ∈ {±1}

Location , corrupted by adding 2~4(0, 67).

0 1, + 2 ,

Fix any interval : = [<, < + =].
Expected number of discontinuities in : is at most > ⋅ =/(6 2B).
Uniform convergence à all width = intervals have C = DE(>=/6 + >) discontinuities w.h.p. 

Lemma: For any = > 0, the functions !",… , !% are (=, C)-dispersed for C = DE
%G

H
+ >

w.h.p. For any I ≥ "

7
, we can take = = >KL"6 and C = DE(>K).



Smoothed Adversaries and Dispersion
More generally: adversary is unable to precisely pick some 
problem parameters (e.g. item values in knapsack).

!
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Challenges:
• Each utility function has multiple dependent discontinuities.
• Distribution of discontinuity location depends on setting.
• How do we generalize to multiple dimensions?

! = ln %&/%(
ln(*&/*()

Dispersion decouples problem-specific smoothness arguments from regret bounds and 
private utility guarantees.



More Results from Dispersion
Bandit online optimization of piecewise Lipschitz functions:
• Learner only observes the scalar !"($") each round.

• Dispersion with & ≈ 1/*+/(,-.) and / ≈ *
012
013 implies regret 45 *

012
013 63, + 9 .

• Optimal exponent on * – other factors may be improvable.
Verify Dispersion for Algorithm Configuration
• Typically, smoothed adversaries choose dispersed functions.
• Greedy algorithms for knapsack and max-weight independent set.
• SDP rounding schemes for integer quadratic programs.

⋮

Goal: Approximately maximize the average with strong 
privacy guarantees for each individual.

• No algorithm has non-trivial utility in the worst-case.
• Matching upper and lower bounds from dispersion.

Differentially Private Optimization:



Future Work

!∗
Better (Semi)Bandit Algorithms
• Current algorithm discretizes # using a $-net.
• Exponential running time in the dimension.
• Does not adapt to optimal $, & -parameters.

• Exploit partial feedback (often observe an entire piece of '()

More Applications
• Derive dispersion for new algorithms (e.g., Initialization of Lloyd’s method)
• Applications beyond algorithm configuration

Tidying Up and Easier Tools
• Current definition is a bit complicated with many “gotchas”.
• Working on getting crisp and intuitive definitions and better tools for 

verifying dispersion in practice.



Other Algorithm Configuration Work
Branch & Bound for Mixed Integer 

Programming
[Balcan, Dick, Vitercik; ICML 2018]

Initialization Procedures for Center-
Based Clustering

[Balcan, Dick, White; NeurIPS 2018]

• Uniform convergence guarantees in the i.i.d. setting (problems drawn from a distribution)
• Large-scale experiments carried out on 256 vCPUs on AWS EC2.

• E.g., for B&B we modify IBM’s CPLEX using callbacks to change the “variable selection 
policy” and implement our tuning algorithm.

CATS ArbitraryClusteringLinear Separators

CPLEX Tuning Results:
• X-axis is B&B parameter.
• Y-axis is tree-size (≈ running time).
• Best parameters vary significantly 

across tasks.

Interpolating between Single, 
Complete, and Average Linkage

[Balcan, Dick, Lang; 2019]
[Balcan, Nagarajan, Vitercik, 

White; COLT 2017]



Social Values

Part 2:
Envy-free Classification

Joint work with Nina Balcan, Ariel Procaccia, and Ritesh Noothigattu [Ongoing]



Envy-freeness

Envy-freeness is the gold standard of fairness for fair division. 

E.g.

cake cutting chore assignment

Idea: Assignment is envy free if no one prefers the assignment of anyone else over their own.



Envy-Freeness in Machine Learning
Idea: A classifier is envy-free if no individual prefers the prediction/assignment of another.

Key Properties:
1. Provides fairness guarantees to individuals.

Group Fairness Individual Fairness

2. It is suitable when there are many outcomes and heterogeneous preferences.

vs

Being released on bail.

Getting a loan.

Advertisement Preferences Job Listings



Problem Setting
• We want to use ML to learn to assign outcomes to individuals.
• For example, deciding which advertisements to show in order to maximize revenue.

• Space ! of individuals, space " of outcomes.
• Assignment rule is a classifier ℎ:! → ".
• Two objectives:

1. Minimize expected loss (e.g., maximize revenue with advertisements)
2. Treat people fairly (what does this mean?)

• We import the notion of envy freeness from fair division.
• Suitable when there are many outcomes and heterogeneous preferences.
• Provides fairness guarantees to individuals, rather than groups.



Envy-free Classifiers

• Given a utility function !:#×% → [0,1] measuring individual preferences.
• A classifier ℎ:# → Δ % is ., / -envy free with respect to ! and 0 if:

Pr
3,34∼0

! 6, ℎ 6 < ! 6, ℎ 68 − / ≤ . .

• . = / = 0: every individual likes their assignment as much as anyone else’s.
• . > 0: A small number of pairs of individuals are allowed to be envious.
• / > 0: A small amount of envy is tolerated.

(Δ(%) is the set of distributions on %)

Example: Two individuals and two outcomes

• (0,0)-EF requires ℎ , ≥ ℎ , and ℎ , ≥ ℎ , .

1 0
0 1Utilities:



Randomized Classifiers
• Envy-freeness is a very strong requirement on deterministic classifiers:

Lem: Every deterministic (0,0)-EF map is of the form ℎ " = argmax)∈+,-(", 0) where 
2′ is a subset of the classes 2 (breaking ties arbitrarily).

• We consider randomized classifiers (that assign distributions to individuals) since they 
have a lot more freedom.

• Better tradeoffs between fairness and accuracy.
• Can construct examples where best randomized (0,0)-EF classifier has arbitrary 

multiplicative improvement over best deterministic (0,0)-EF classifier.



Main Question: Can we learn EF classifiers?

• If a classifier is EF on a sample of individuals, does this imply that it will remain EF on the 
underlying distribution?

• Following classic learning theory results, we assume the learner chooses an assignment 
rule from some class ℋ = {ℎ:& → Δ ) } of low complexity.

• Main challenge: no known complexity measure applicable for distribution-valued outputs.

• VC-dimension works for binary outputs.
• Pseudo-dimension and Rademacher complexity work for a single real value output.
• Natarajan dimension works for multi-class outputs.



Random Mixtures of Deterministic Classifiers
• No existing natural notion of complexity for distribution-valued outputs…
• Idea: Many randomized classifiers can be expressed as mixtures of deterministic classifiers.

Def: A class ! = {ℎ: & → Δ ) } is an +-mixture of a deterministic class , = {-: & → )} if 
for each ℎ ∈ ! there exists / functions -0,… , -3 ∈ , and mixing weights 
40,… , 43 ∈ Δ3 such that Pr ℎ 7 = 8 = ∑: 4:1{-: 7 = 8} .

ℎ randomly picks -: with probability 4: and outputs its classification of 7.

If , has low Natarajan dimension, and ! is an /-mixture of ,, then we should expect envy-
freeness to generalize for !.

ℎ 7
-0(7)

-3(7)
⋮

40

43



Envy-Freeness Generalizes for Random Mixtures

Thm: Let ! = ℎ: % → Δ ( be an )-mixture of * = {,: % → (} and suppose the Natarajan 
dimension of * is .. If / = { 01, 013 , … , 05, 053 } is an iid sample of 6 = 78 9:;

<: pairs 

from =, then w.h.p. every ℎ ∈ ! that is (@, A)-EF on / will be (@ + 7E, A + 4E)-EF on =.

Idea:
• Approximate ! by a finite class H! (the size will depend on ) and .).
• Can get generalization for H! from Hoeffding + Union bound.
• For each ℎ, let Iℎ be its approximation in H!.
• The classifiers ℎ and Iℎ behave similarly on = and sufficiently large samples.

ℎ on / Iℎ on /

Iℎ on =ℎ on =

• If ℎ is EF on / then Iℎ is too.
• Iℎ belongs to a finite class, so Iℎ is also EF on =.
• If Iℎ is EF on =, then ℎ is too.

EF parameters degrade along each edge.



Future Work

ERM Algorithms: Algorithms for efficiently finding low-envy low-loss classifiers.

Improved Dependence on ! (number of classifiers mixed):
• Current generalization bound is "# $%&

'& , but it should be "# $
'& .

New Fairness Notions:
• I’m particularly interested in looking to the humanities and other disciplines where 

fairness has been important.



Other Work
• Label-efficient multi-class learning.

h1

h2h3

K1 K2

K3

K4

[Balcan, Dick, Mansour; AAAI 2017]

• Differentially private !-means and !-median clustering
[Balcan, Dick, Liang, Mou, Zhang; ICML 2017]

Active cube

Inactive cube

Candidate centers

Data points

• Differentially private covariance estimation
[Amin, Dick, Kulesza, Medina, Vassilvitskii; 2018]

"#∗

• Partitioning schemes for communication-efficient distributed learning.
[Dick, Li, Pillutla, White, Balcan, Smola; AIStats 2017]

1st Partition

2nd Partition

!#& Partition

…
Data



Thanks!


