Label Efficient Learning by Exploiting Multi-class Output Codes

Maria-Florina Balcan, Travis Dick, Yishay Mansour

Overview

- Active algorithms for *multi-class* learning problems.
- Basic approach:
 - Assume a **supervised** algorithm (output codes) would succeed.
 - Investigate the implicit assumptions of that algorithm.
 - Use them to prove guarantees for our active algorithms.

• Clustering and hyperplane-detection based algorithms

Output Codes

- Natural generalization of one-vs-all learning.
- Reduction from *multi-class* to *binary* classification.
- Design *m* binary partitions of the classes.
- Think of each partition as a *semantic feature*.

Pet?	Fur?	Long Neck?	Multiple lives?
yes	yes	no	no
yes	yes	no	yes
no	no	no	no
no	yes	yes	no

Supervised O.C. Training & Prediction

- learn a binary classifier for each semantic feature.
- Result is $h: X \to \{\pm 1\}^m$ that predicts semantic features.

• Prediction: Assign x to class with closest code word to $\hat{h}(x)$.

What does a linear output code look like?

What does a linear output code look like?

Active Learning Setting

- Instance space $X \subset \mathbb{R}^d$.
- Unknown target function $f^*: X \to [L]$.
- Unknown data distribution p on X.
- Algorithm receives an iid sample $x_1, ..., x_n$ from p and can query the label $y_i = f^*(x_i)$ of each point.
- Goal: output $\hat{f}: X \to [L]$ with $\Pr[\hat{f}(x) \neq f^*(x)] \leq \epsilon$ without too many queries.

Our Main Assumption

Assumption: There exists an unknown *consistent* output code classifier with linear separators. Moreover, the predicted code word h(x) is always (w.p. 1) within distance β of a class code word.

- Second part ensures the OC is not *miraculously* consistent (i.e. consistent despite making terrible predictions on the binary tasks).
- This assumption relates the OC and the unlabeled data distribution:

= 0

= 1

Summary of Results

- If the output code is *error correcting* then
 ★ we are able to learn to accuracy *ε* with label complexity independent of *ε* by clustering.
- 2. If the output code is **one-vs-all** and the data is contained in the unit ball, then we are able to learn to accuracy ϵ using exactly L label queries by clustering.
- 3. If the output code satisfies a novel **boundary features** condition, then we can learn to accuracy ϵ with L label queries using a hyperplane detection algorithm.

 h_2

 K_{A}

Error Correcting Output Codes

- Experts often design the code matrix to be *error correcting*: Large Hamming dist. between code words.
- Makes the supervised output code robust to errors in the binary classification tasks.

Assumption: Class code words have distance at least $2\beta + d + 1$.

For clustering:

Assumption: Data density p has C-thick level sets: for all $\lambda > 0$ and $\sigma > 0$, every point of $\{p \ge \lambda\}$ is within distance $C\sigma$ of the σ -interior.

ECOC Main Observation

- For points x_1, x_2 , the distance $d_{Ham}(h(x_1), h(x_2))$ is the number of hyperplanes crossed by the line segment from x_1 to x_2
- If $y_1 \neq y_2$ then $d_{Ham}(h(x_1), h(x_2)) \geq 2\beta + d + 1 2\beta = d + 1$.
- If hyperplanes are in general position, this implies $|x_1 x_2| > 0$.
- So there is a non-zero margin g > 0 between all classes!

Clustering Algorithm for ECOC Setting

- 1. Draw an unlabeled sample of data.
- 2. Connect points closer than distance r.
- 3. Query the label from each cluster in decreasing order of size until at most an $\epsilon/4$ -fraction of data is in unlabeled clusters.
- 4. Output a nearest neighbor classifier using the labeled clusters.

Let *N* be the number of connected components of $\{p \ge \tilde{\epsilon}\}$ for $\tilde{\epsilon} \approx \epsilon$.

Theorem: If $r \leq g$ and $n = O(\frac{1}{\epsilon^2} \left(\frac{Cd}{r}\right)^{2d} + N)$ then with probability at least $1 - \delta$ the above algorithm will query at most N labels and achieve error $\leq \epsilon$.

Label complexity is essentially independent of target error rate ϵ !

Additional Results

What about weaker requirements on the Hamming distance between code words?

- 1. One-vs-all on the unit ball: Hamming dist. = 2
- 2. Boundary feature condition: Hamming dist. = 1
 - This means different classes can be very well connected and so clustering will fail!

One-vs-all on the Unit Ball

Assumption: The data is in the unit ball and there exists a consistent one-vs-all classifier.

i.e., there are linear separators $h_1, ..., h_L$ such that $x \in B$ belongs to class *i* if and only if $h_i(x) > 0$.

Assumption: $\beta = 0$ and $c_{lb} \leq p(x) \leq c_{ub}$ for x with $d_{Ham}(h(x), C) \leq \beta$

Idea: After projecting to the surface of the ball, the classes are probabilistically separated! Find high-density clusters after projecting to the unit sphere.

 $e^{q(\theta)}$

Theorem: For any $\epsilon > 0$, running our alg. on unlabeled sample of size $n = \tilde{O}\left(\frac{c_{ub}^{4d}d^d}{\epsilon^{2d}c_{lb}^{2d}b_{min}^{2d}}\right)$ will query *L* labels and have error at most ϵ w.h.p.

Boundary Features Condition

Assumption: For every semantic feature *j*, there exists a class *i* such that flipping feature *i* for class *j* produces a code word not equal to any other class.

Assumption: $\beta = 0$ and $c_{lb} \le p(x) \le c_{ub}$ for x with $d_{Ham}(h(x), C) \le \beta$

- This implies that every linear separator is a linear boundary on the support of p.
- So we can recover the linear separators by estimating linear boundaries of the support!

Theorem: For any $\epsilon > 0$, running our alg. on an unlabeled sample of size $n = \tilde{O}\left(\frac{m^2 c_{ub}^2}{\epsilon^4 R^d}\right)$ will query at most *L* labels and will have error at most ϵ w.h.p.

**R* is a scale parameter of the problem

Summary & Future Work

- Designed and analyzed active algorithms for multi-class problems.
- Analysis leveraged the implicit assumptions of supervised output codes.

- Future Work:
 - Algorithms with non-exponential unlabeled sample complexity.
 - Similar analysis using implicit assumptions of other supervised algorithms.

Thanks!