Dispersion for Data-Driven Algorithm Configuration, Online Learning, and Private Optimization

> Maria-Florina Balcan, Travis Dick, Ellen Vitercik Carnegie Mellon University

Data-Driven Algorithm Configuration

Problem instances from specific application.

Goal:

- Automatically find the best parameters for a specific application domain.
- Algorithm is run repeatedly, historic instances are training data.
- Want provable guarantees for online and private settings.

Example: Greedy Knapsack Algorithm

Problem Instance:

- Given *n* items
- item *i* has value v_i and size s_i
- a knapsack with capacity K

Find the most value subset of items that fits.

Algorithm: (Parameter $\rho \geq 0$)

Add items in decreasing order of $\operatorname{score}_{\rho}(i) = v_i / s_i^{\rho}$.

Goal: Find ρ giving highest total value for an application / source of instances.

Observation: For one instance, total value is piecewise constant in ρ .

If ρ and ρ' give the same item ordering, output is the same. Items *i* and *j* only swap relative order at $\rho = \frac{\ln(v_i/v_j)}{\ln(s_i/s_j)}$. So at most n^2 discontinuities.

More generally, utility is often a piecewise Lipschitz function of parameters.

Learning protocol:

For each round t = 1, ..., T:

- 1. Learner chooses point $\rho_t \in C \subset \mathbb{R}^d$.
- 2. Adversary chooses piecewise *L*-Lipschitz function $u_t: C \rightarrow R$.
- 3. Learner gets reward $u_t(\rho_t)$ and either
 - Observes entire function *u*_t
 - Observes the scalar $u_t(\rho_t)$

Notation: Let $U_t(\rho) = \sum_{s=1}^t u_t(\rho)$

(Learner chooses parameter vector ρ)

(Adversary chooses problem instance x_t and sets $u_t(\rho) =$ utility of ρ for x_t)

Goal: Minimize regret = $\max_{\rho \in C} U_T(\rho) - \sum_{t=1}^T u_t(\rho_t)$.

A Mean Adversary

Fact: There exists an adversary choosing piecewise constant functions from [0,1] to [0,1] such that every full information online algorithm has linear regret.

At round t, adversary chooses a threshold τ_t and flips a coin to choose either

Talk Outline

- 1. Define a condition on collections of PWL functions called *Dispersion*.
- 2. Regret bounds for Online PWL Optimization under Dispersion.
- 3. Dispersion in algorithm configuration under realistic assumptions.
- 4. Differentially private optimization of PWL functions.

Dispersion

The mean adversary concentrated discontinuities near ρ^* . Even very near points had low utility!

Def: Functions $u_1(\cdot), \dots, u_T(\cdot)$ are (w, k)-dispersed at point ρ if the ℓ_2 -ball $B(\rho, w)$ contains discontinuities for at most k of $u_1 \dots, u_T$.

Each colored line is a discontinuity of one function.

Ball of radius w about ρ contains 2 discontinuities. $\rightarrow (w, 2)$ -dispersed.

Functions will satisfy a range of dispersion parameters:

Online Optimization with Dispersion

Full Information Regret Bounds

We analyze the classic Exponentially Weighted Forecaster [Cesa-Bianchi and Lugosi '06]

Algorithm: (Parameter $\lambda > 0$) At round *t*, sample ρ_t from $p_t(\rho) \propto \exp(\lambda U_{t-1}(\rho))$.

Theorem: If $u_1, ..., u_T: C \to [0,1]$ are piecewise *L*-Lipschitz and (w, k)-dispersed at ρ^* , EWF has regret $O\left(\sqrt{Td\log\frac{1}{w}} + TLw + k\right)$.

Intuition: Any ρ' in $B(\rho^*, w)$ has utility at least $U_T(\rho^*) - TLw - k$. "Many" good points.

When is this a good bound? If $w = 1/(L\sqrt{T})$ and $k = \tilde{O}(\sqrt{T})$ regret is $\tilde{O}(\sqrt{Td})$.

Note: don't need to know (w, k) in advance!

Matching Lower Bound

Theorem: For any algorithm A and T big enough, there are piecewise constant functions u_1, \ldots, u_T so that A has expected regret at least

$$\Omega\left(\inf_{(w,k)}\sqrt{Td\log\left(\frac{1}{w}\right)}+k\right)$$

Where the infimum is over all (w, k)-dispersion parameters satisfied by u_1, \ldots, u_T at ρ^* .

Our upper bound in this case is $O\left(\inf_{(w,k)} \sqrt{Td \log \frac{1}{w} + k}\right)$.

Idea: Calculate dispersion parameters for worst-case lower bound. Works when d = 1.

More careful construction works even when sublinear regret is possible, and in higher dimensions.

Bandit Feedback Regret Bounds

Theorem: There exists a bandit-feedback algorithm A such that, if $u_1, \ldots, u_T: C \to [0,1]$ are piecewise L-Lipschitz and (w, k)-dispersed at ρ^* , then the expected regret of A

is at most
$$\tilde{O}\left(\sqrt{Td\left(\frac{1}{w}\right)^d} + TLw + k\right)$$

Reduction:

- Let ρ_1, \dots, ρ_N be a *w*-net for *C* (can take $N \approx 1/w^d$).
- N-armed bandit, payout for arm i at round t is $u_i(\rho_t)$.
- Use EXP3 to play this bandit \rightarrow regret is $O(\sqrt{TN \log N})$.
- Ball of radius w about ρ^* must contain some ρ_i .
- Regret of ρ_i compared to ρ^* is at most TLw + k.

When is this a good bound?

If
$$w = T^{\frac{d+1}{d+2}-1}$$
 and $k = \tilde{O}(T^{\frac{d+1}{d+2}})$, then the regret is $\tilde{O}\left(T^{\frac{d+1}{d+2}}\left(\sqrt{d3^d} + L\right)\right)$

Matches dependence on T of a lower bound for (globally) Lipschitz functions.

Dispersion in Algorithm Configuration

Smoothed Adversaries and Dispersion

Consider any adversary chooses threshold functions $u_1, ..., u_T: [0,1] \rightarrow [0,1]$:

Location $\tau \in [0,1]$ Orientation $s \in \{\pm 1\}$ Location τ corrupted by adding $Z \sim N(0, \sigma^2)$.

Lemma: For any w > 0, the functions $u_1, ..., u_T$ are (w, k)-dispersed for $k = \tilde{O}\left(\frac{Tw}{\sigma} + \sqrt{T}\right)$ w.h.p. For any $\alpha > \frac{1}{2}$, we can take $w = T^{\alpha-1}\sigma$ and $k = \tilde{O}(T^{\alpha})$.

Fix any interval I = [a, a + w]. Expected number of discontinuities in I is at most $T \cdot w/(\sigma\sqrt{2\pi})$. Uniform convergence \rightarrow all width w intervals have $k = \tilde{O}(Tw/\sigma + \sqrt{T})$ discontinuities w.h.p.

Smoothed Adversaries and Dispersion

More generally: adversary is unable to precisely pick some problem parameters (e.g. item values in knapsack).

Challenges:

- Each utility function has multiple dependent discontinuities.
- Distribution of discontinuity location depends on setting.
- How do we generalize to multiple dimensions?

 $=\frac{\ln(v_i/v_j)}{\ln(s_i/s_i)}$

Dispersion decouples problem-specific smoothness arguments from regret bounds and private utility guarantees.

Dispersion in Knapsack

Problem Instance:

- Given *n* items
- item *i* has value v_i and size s_i
- a knapsack with capacity K

Find the most value subset of items that fits.

Algorithm: (Parameter $\rho \in [0, M]$)

Add items in decreasing order of $\operatorname{score}_{\rho}(i) = v_i/s_i^{\rho}$.

Lemma: If $v_i \in [0,1]$, $s_i \in [1,2]$, and the adversary is "smoothed" (e.g. Gaussian noise with std. dev. σ is added to each v_i) then u_1, \ldots, u_T are (w, k)-dispersed with $w = T^{\alpha-1}\sigma$ and $k = \tilde{O}(n^2T^{\alpha})$ for any $\alpha \ge 1/2$ with high probability.

Idea: Discontinuities for items (i, j) across t are independent \rightarrow similar to noisy thresholds. Union bound over the n^2 pairs of items.

Full information regret = $\tilde{O}(n^2\sqrt{T})$

Bandit feedback regret = $\tilde{O}(T^{\frac{2}{3}}(\sqrt{\sigma} + n^2))$

Integer Quadratic Programming

IQP: Given $A \in \mathbb{R}^{n \times n}$, solve $\max_{x} x^T A x = \sum_{i,j} a_{ij} x_i x_j$ s.t. $x_i \in \{\pm 1\}$ for all i = 1, ..., n.

E.g.: Max cut Given weighted graph G(V, E)Find cut $S, T \subset V$ maximizing weight of edges between S, T.

 x_i = which side of cut is vertex *i*.

 $\max \sum_{(i,j)\in E} w_{ij}(1 - x_i x_j)/2$ s.t. $x_i \in \{\pm 1\}$ for all *i*.

Integer Quadratic Programming

IQP: Given $A \in \mathbb{R}^{n \times n}$, solve $\max_{x} x^T A x = \sum_{i,j} a_{ij} x_i x_j$ s.t. $x_i \in \{\pm 1\}$ for all i = 1, ..., n.

Algorithmic Approach: SDP + Rounding

1. Associate each binary variable x_i with a vector $v_i \in \mathbb{R}^n$. Solve the SDP

 $\max \sum_{i,j} a_{ij} \langle v_i, v_j \rangle$ s.t. $||v_i|| = 1$ for all *i*.

2. Rounding Procedure [Goemans & Williamson '95]

- Choose a random hyperplane *h*
- Set x_i to +1 if v_i on positive side of h, -1 otherwise.

Integer Quadratic Programming: Outward Rotations

IQP: Given $A \in \mathbb{R}^{n \times n}$, solve $\max_{x} x^T A x = \sum_{i,j} a_{ij} x_i x_j$ s.t. $x_i \in \{\pm 1\}$ for all i = 1, ..., n.

Outward Rotation Algorithm:

1. Associate each binary variable x_i with a vector v_i .

 $\max \sum_{i,j} a_{ij} \langle v_i, v_j \rangle$ s.t. $||v_i|| = 1$ for all *i*.

- 2. Outward Rotations: [Zwick '99]
- For each $i \in [n]$, let $v'_i = [\cos(\rho) v_i; \sin(\rho) e_i] \in \mathbb{R}^{2n}$.
- Pick random hyperplane *h* and round as in GW algorithm.

 $\rho = 0$: GW algorithm. $\rho = \pi/2$: Random assignment. Better performance than GW with $\rho \neq 0$ for MaxCut with light cuts.

Goal: Tune parameter $\rho \in [0, \frac{\pi}{2}]$ to maximize $u_t(\rho) = x^T A x$

Dispersion for Outward Rotations IQP

Think of the random hyperplane as part of the IQP. $u_t(\rho) = u(\rho; A_t, h_t)$.

Lemma: For every sequence of IQPs $A_1, ..., A_T$ and $\alpha \ge 1/2$, the corresponding utility functions $u_1, ..., u_T$ are (w, k)-dispersed with $w = T^{1-\alpha}$ and $k = \tilde{O}(nT^{\alpha})$ w.h.p. over the randomly chosen hyperplanes.

Idea:

- The adversary can't control the random hyperplanes.
- Discontinuities depend on the hyperplanes \rightarrow dispersion for free.

Full Information Regret: $\tilde{O}(n\sqrt{T})$ Bandit feedback regret: $\tilde{O}(nT^{2/3})$

A similar argument holds for *s*-linear rounding [Feige, Langberg '06].

Differentially Private Optimization

Differentially Private Optimization

Goal: Given utility functions u_1, \ldots, u_T where each u_i encodes sensitive information about one individual, find an approximate maximizer of $\frac{1}{\tau}\sum_t u_t(\rho)$ without violating privacy.

Example:

- Website solves knapsack instances.
- Each instance represents a specific user's values for some set of items.
 - Suppose a new user joins, and the website decreases ρ .
 - Scores for items were given by v_i/s_i^{ρ} .
 - We might guess new user highly values large items.

Differential Privacy

Def: Two collections of utility functions S and S' are *neighboring* if they differ on at most one function.

Def: A randomized alg. A is ϵ -differentially private if for any neighboring collections S, S' and any set C of outcomes, we have:

 $\Pr(A(S) \in C) \le e^{\epsilon} \cdot \Pr(A(S') \in C)$

This definition of neighboring is good when:

- Each u_i encodes information about an individual or small group.
- Individuals are not present in too many functions.

Exponential Mechanism Utility

We analyze the exponential mechanism. [McSherry and Talwar '07]

Given a collection of functions $S = \{u_1, \dots, u_T : C \rightarrow [0,1]\}$

Algorithm: For $\epsilon > 0...$ Sample ρ from $p(\rho) \propto \exp\left(\frac{\epsilon}{2\Delta} \cdot U_S(\rho)\right)$ where $U_S(\rho) = \frac{1}{T} \sum_{i=1}^N u_i(\rho)$.

 ϵ is the target privacy parameter. $\Delta = 1/N$ is the sensitivity of the average utility.

Theorem: If $u_1, ..., u_T$ are *L*-Lipschitz and (w, k)-dispersed, then then with high probability, the exponential mechanism outputs $\hat{\rho}$ such that

$$U_{\rm S}(\hat{\rho}) \ge \max U_{\rm S}(\rho) - O\left(\frac{u}{T\varepsilon}\log\frac{1}{w} + Lw + \frac{\kappa}{T}\right)$$

Intuition: Exponential mechanism can fail if there are many more bad points than good.

Any ρ' in $B(\rho^*, w)$ has utility at least $U_T(\rho^*) - TLw - k$. "Many" good points.

Lower bound for Privacy

Theorem: For any ϵ -DP optimizer A there exists a multiset S of T piecewise constant functions from $B(0,1) \subset \mathbb{R}^d$ to [0,1] such that with probability 99%, A outputs an $\Omega\left(\inf_{(w,k)} \frac{d}{N\epsilon} \log \frac{1}{w} + \frac{k}{N}\right)$ suboptimal solution.

Idea:

- Packing argument similar to De [2012].
- Construct many sets of functions whose sets of approximate maximizers are disjoint.
- Every ϵ -DP algorithm must have low utility on at least one.
- Tune the construction so that dispersion parameters match utility lower bound.

Thanks!

- 1. Dispersion: measuring the concentration of discontinuities.
- 2. Dispersion-based regret bounds for online optimization.
- 3. Differentially private utility guarantees for private optimization.
- 4. Several interesting applications where smoothness implies dispersion.

Correlation Clustering

IQP: Given $A \in \mathbb{R}^{n \times n}$, solve $\max_{x} x^T A x = \sum_{i,j} a_{ij} x_i x_j$ s.t. $x_i \in \{\pm 1\}$ for all i = 1, ..., n.

E.g.: Correlation Clustering Given weighted graph G(V, E)Find clusters $C_1, C_2 \subset V$ maximizing sum of weights within cluster minus sum of weights between clusters.

 x_i = which cluster *i* belongs to.

 $\max \sum_{(i,j)\in E} w_{ij} x_i x_j$
s.t. $x_i \in \{\pm 1\}$ for all i.

