
Dispersion for Data-Driven
Algorithm Configuration, Online

Learning, and Private Optimization

Maria-Florina Balcan, Travis Dick, Ellen Vitercik
Carnegie Mellon University

Data-Driven Algorithm Configuration

Goal:
• Automatically find the best parameters for a specific application domain.
• Algorithm is run repeatedly, historic instances are training data.
• Want provable guarantees for online and private settings.

…!" !#
Problem instances from specific application.

Algorithm

Parameters

0.1 0.3 0.2 0.1 1.2

!$

Output

Example: Greedy Knapsack Algorithm

Add items in decreasing order of score& ' =)*/,*&.
Algorithm: (Parameter - ≥ 0)

• Given 0 items
• item ' has value)* and size ,*
• a knapsack with capacity 1
Find the most value subset of items that fits.

Problem Instance:

Goal: Find - giving highest total value for an application / source of instances.
Observation: For one instance, total value is piecewise constant in -.
If - and -3 give the same item ordering, output is the same.

Items ' and 4 only swap relative order at - = 56 78/79
56(;8/;9)

.

So at most 0= discontinuities. -

va
lu

e

Order of items fixed.

For each round ! = 1,… , &:
1. Learner chooses point '(∈ * ⊂ ,-.

2. Adversary chooses piecewise .-Lipschitz
function /(: * → ,.

3. Learner gets reward /(('() and either
• Observes entire function /(
• Observes the scalar /(('()

Learning protocol:

(Learner chooses parameter vector ')

(Adversary chooses problem instance
5(and sets /(' = utility of ' for 5()

Goal: Minimize regret = max
9∈:

;<(') − ∑(?@< /('(.

Notation: Let ;(' = ∑A?@(/((')

More generally, utility is often a piecewise
Lipschitz function of parameters.

Parameter Value

U
til

ity

A Mean Adversary
Fact: There exists an adversary choosing piecewise constant

functions from [0,1] to [0,1] such that every full information
online algorithm has linear regret.

At round &, adversary chooses a threshold '(and flips a coin to choose either

0 1'(0 1'(

or

Every learner has expected utility of ½ per round à expected total utility */2.

Let -(= {0 ∈ 0,1 ∶ 34 0 = 1 for all 1 ≤ 6 ≤ &}
Set '(to be midpoint of -(89 àmax

=
>= 0 = *.

Regret = */2.

Talk Outline

1. Define a condition on collections of PWL functions called Dispersion.

2. Regret bounds for Online PWL Optimization under Dispersion.

3. Dispersion in algorithm configuration under realistic assumptions.

4. Differentially private optimization of PWL functions.

Dispersion

Def: Functions !" ⋅ , … , !&(⋅) are),* -dispersed at point + if the ℓ--ball . /,0
contains discontinuities for at most 1 of !" … , !&.

The mean adversary concentrated discontinuities near /∗. Even very near points had low utility!

3

/ 0

Each colored line is a discontinuity of one function.

Ball of radius 0 about / contains 2 discontinuities.
à (0, 2)-dispersed.

0

1Functions will satisfy a range of dispersion parameters:

Online Optimization with Dispersion

Full Information Regret Bounds
We analyze the classic Exponentially Weighted Forecaster [Cesa-Bianchi and Lugosi ’06]

Algorithm: (Parameter ! > 0)
At round %, sample &' from (' & ∝ exp(!.'/0(&)).

Theorem: If 10,… , 14: 6 → [0,1] are piecewise ;-Lipschitz and (<, =)-dispersed

at &∗, EWF has regret ? @A log 0E + @;< + = .

When is this a good bound?
If < = 1/(; @) and = = I?(@) regret is I?(@A).

Intuition: Any &J in K &∗, < has utility at least .4 &∗ − @;< − =. “Many” good points.

6

&∗

<

*assume 6 has radius 1.Note: don’t need to know (<, =) in advance!

Matching Lower Bound
Theorem: For any algorithm ! and " big enough, there are piecewise constant functions
#$,… , #' so that ! has expected regret at least

Ω inf(-,.) "0 log $
- + 5

Where the infimum is over all (6, 5)-dispersion parameters satisfied by #$,… , #' at 7∗.

Our upper bound in this case is 9 inf(-,.) "0 log $- + 5 .

Idea: Calculate dispersion parameters for worst-case lower bound. Works when 0 = 1.

0 1=0 1=
or

More careful construction works even when sublinear regret is possible, and in higher
dimensions.

Bandit Feedback Regret Bounds
Theorem: There exists a bandit-feedback algorithm ! such that, if "#,… , "&: (→ [0,1] are

piecewise .-Lipschitz and (0, 1)-dispersed at 3∗, then the expected regret of !

is at most 56 78 #
9

:
+ 7.0 + 1 .

Reduction:
• Let 3#,… , 3< be a 0-net for ((can take = ≈ 1/0:).
• =-armed bandit, payout for arm @ at round A is "B(3C).
• Use EXP3 to play this bandit à regret is 6 7= log= .
• Ball of radius 0 about 3∗ must contain some 3B.
• Regret of 3B compared to 3∗ is at most 7.0 + 1.

When is this a good bound?

If 0 = 7
HIJ
HIKL# and 1 = 56(7

HIJ
HIK), then the regret is 56 7

HIJ
HIK 83: + .

Matches dependence on 7 of a lower bound for (globally) Lipschitz functions.

3∗

Dispersion in Algorithm
Configuration

Parameters

0.1 0.3 0.2 0.1 1.2

Smoothed Adversaries and Dispersion
Consider any adversary chooses threshold functions !",… , !%: 0,1 → [0,1]:

0 1,

Location , ∈ [0,1]
Orientation . ∈ {±1}

Location , corrupted by adding 2~4(0, 67).

0 1, + 2 ,

Fix any interval : = [<, < + =].
Expected number of discontinuities in : is at most > ⋅ =/(6 2B).
Uniform convergence à all width = intervals have C = DE(>=/6 + >) discontinuities w.h.p.

Lemma: For any = > 0, the functions !",… , !% are (=, C)-dispersed for C = DE
%G

H
+ >

w.h.p. For any I > "

7
, we can take = = >JK"6 and C = DE(>J).

Smoothed Adversaries and Dispersion
More generally: adversary is unable to precisely pick some
problem parameters (e.g. item values in knapsack).

!

va
lu

e
Challenges:
• Each utility function has multiple dependent discontinuities.
• Distribution of discontinuity location depends on setting.
• How do we generalize to multiple dimensions?

! = ln %&/%(
ln(*&/*()

Dispersion decouples problem-specific smoothness arguments from regret bounds and
private utility guarantees.

Dispersion in Knapsack

• Given ! items
• item " has value #$ and size %$
• a knapsack with capacity &
Find the most value subset of items that fits.

Add items in decreasing order of score, " = #$/%$
,.

Algorithm: (Parameter / ∈ [0,4])

Problem Instance:

Lemma: If #$ ∈ [0,1], %$ ∈ [1,2], and the adversary is “smoothed” (e.g. Gaussian
noise with std. dev. 8 is added to each #$) then 9:, … , 9< are =, > -dispersed
with = = ?@A:8 and > = BC(!E?@) for any G ≥ 1/2 with high probability.

Full information regret = BC(!E ?)

Idea: Discontinuities for items (", I) across J are independent à similar to noisy thresholds.
Union bound over the !E pairs of items.

Bandit feedback regret = BC(?
K
L 8 + !E)

Integer Quadratic Programming

!" = which side of cut is vertex #.

.max∑ ",) ∈+ ,")(1 − !"!))/2
s.t. !" ∈ {±1} for all #.

IQP: Given 6 ∈ ℝ8×8, solve max: !;6! = ∑",) =") !"!) s.t. !" ∈ {±1} for all # = 1,… , ?.

E.g.: Max cut
Given weighted graph @(A, B)
Find cut C, D ⊂ A maximizing weight
of edges between C, D.

Integer Quadratic Programming

1. Associate each binary variable !" with a

vector #" ∈ ℝ&. Solve the SDP

.max∑",, -", ⟨#", #,⟩
s.t. ‖#"‖ = 1 for all 3.

2. Rounding Procedure [Goemans & Williamson ‘95]

Algorithmic Approach: SDP + Rounding

• Choose a random hyperplane ℎ
• Set !" to +1 if #" on positive side of ℎ, −1 otherwise. #,

#"
ℎ

IQP: Given 7 ∈ ℝ&×&, solve max9 !:7! = ∑",, -", !"!, s.t. !" ∈ {±1} for all 3 = 1,… , ?.

Integer Quadratic Programming: Outward Rotations
IQP: Given ! ∈ ℝ$×$, solve max

)
+! = ∑.,0 1.0 *.*0 s.t. *. ∈ {±1} for all 6 = 1,… , 8.

1. Associate each binary variable *. with a
vector 9..

.max∑.,0 1.0 ⟨9., 90⟩
s.t. ‖9.‖ = 1 for all 6.

2. Outward Rotations: [Zwick ‘99]

Outward Rotation Algorithm:

• For each 6 ∈ [8], let 9.
? = cos C 9.; sin C G. ∈ ℝH$.

• Pick random hyperplane ℎ and round as in GW algorithm.

Goal: Tune parameter C ∈ [0,
K

H
] to maximize LM C = *N!*

90
?

9.
?

ℎ

[9.; 0] [0; G.]

C

C = 0: GW algorithm.
C = O/2: Random assignment.
Better performance than GW with C ≠ 0 for MaxCut with light cuts.

Dispersion for Outward Rotations IQP

Lemma: For every sequence of IQPs !",… , !% and & ≥ 1/2, the corresponding utility
functions +",… , +% are (-, .)-dispersed with - = 1"23 and . = 45(613) w.h.p.
over the randomly chosen hyperplanes.

Idea:
• The adversary can’t control the random hyperplanes.
• Discontinuities depend on the hyperplanes à dispersion for free.

Full Information Regret: 45 6 1

Think of the random hyperplane as part of the IQP. +7 8 = +(8; !7, ℎ7).

A similar argument holds for ;-linear rounding [Feige, Langberg ‘06].

Bandit feedback regret: 45 61</=

Differentially Private
Optimization

Differentially Private Optimization
Goal: Given utility functions !",… , !% where each !& encodes sensitive information about
one individual, find an approximate maximizer of "% ∑(!((*) without violating privacy.

Example:

• Website solves knapsack instances.
• Each instance represents a specific user’s values for some set of items.

• Suppose a new user joins, and the website decreases *.
• Scores for items were given by ,&/.&

/.

• We might guess new user highly values large items.

Differential Privacy

Def: Two collections of utility functions ! and !" are neighboring if they differ on at most
one function.

#$
⋮
#&
⋮
#'

#$"
⋮
#&"
⋮
#'"

! !"

Def: A randomized alg. (is)-differentially private if for any neighboring collections !, !"
and any set + of outcomes, we have:

Pr (! ∈ + ≤ 01 ⋅ Pr((!" ∈ +)

This definition of neighboring is good when:
• Each #& encodes information about an individual or small group.
• Individuals are not present in too many functions.

Exponential Mechanism Utility

Algorithm: For ! > 0...
Sample $ from % $ ∝ exp

*

+,
⋅ ./($) where ./ $ =

3

4
∑673
8 96 $.

We analyze the exponential mechanism. [McSherry and Talwar ’07]

! is the target privacy parameter. Δ = 1/> is the sensitivity of the average utility.

Theorem: If 93,… , 94 are A-Lipschitz and (B, C)-dispersed, then then with high probability,
the exponential mechanism outputs D$ such that

.E D$ ≥ max./ $ − J
K

4L
log

3

P
+ AB +

R

4

Given a collection of functions S = {93,… , 94: V → [0,1]}

V

$∗

B

*assume V has radius 1.

Intuition: Exponential mechanism can fail if there are many
more bad points than good.

Any $\ in] $∗, B has utility at least .4 $∗ − ^AB − C.

“Many” good points.

Theorem: For any !-DP optimizer " there exists a multiset # of $ piecewise
constant functions from % 0,1 ⊂ ℝ+ to [0,1] such that with

probability 99%, " outputs an Ω inf
4,5

+
67 log

;
4 +

5
6 suboptimal

solution.

Lower bound for Privacy

Idea:
• Packing argument similar to De [2012].
• Construct many sets of functions whose sets of approximate maximizers are disjoint.
• Every !-DP algorithm must have low utility on at least one.
• Tune the construction so that dispersion parameters match utility lower bound.

Thanks!

1. Dispersion: measuring the concentration of discontinuities.

2. Dispersion-based regret bounds for online optimization.

3. Differentially private utility guarantees for private optimization.

4. Several interesting applications where smoothness implies dispersion.

Correlation Clustering

!" = which cluster # belongs to.

.max∑ ",) ∈+ ,")!"!)
s.t. !" ∈ {±1} for all #.

IQP: Given 1 ∈ ℝ3×3, solve max5 !61! = ∑",) 8") !"!) s.t. !" ∈ {±1} for all # = 1,… , :.

E.g.: Correlation Clustering
Given weighted graph ;(=, >)
Find clusters @A, @B ⊂ = maximizing
sum of weights within cluster minus
sum of weights between clusters.

