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Data-Driven Algorithm Configuration

Goal:
• Automatically find the best parameters for a specific application domain.
• Algorithm is run repeatedly, historic instances are training data.
• Want provable guarantees for online and private settings.
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An Overview
• Algorithm configuration often requires optimizing sums of piecewise Lipschitz functions.

• Worst-case impossibility results for online and private optimization of PWL functions.

Our Contributions:

• Identify a general structural property called dispersion that implies
• Good regret bounds in online optimization
• Utility guarantees for differentially private optimization
• Uniform convergence results in statistical settings. 

• Satisfied in real problems under very mild assumptions.

Lipschitz on each piece



Example: Greedy Knapsack Algorithm

Add items in decreasing order of score& ' = )*/,*&.
Algorithm: (Parameter - ≥ 0)

• Given 0 items
• item ' has value )* and size ,*
• a knapsack with capacity 1
Find the most valuable subset of items that fits.

Problem Instance:

Observation: For one instance, total value is 
piecewise constant in -.

-

va
lu

e

Order of items fixed.

[Gupta & Roughgarden ’16]



For each round ! = 1,… , &:
1. Learner chooses point '( ∈ * ⊂ ,-.
2. Adversary chooses piecewise .-Lipschitz function /(: * → ,.
3. Learner gets reward /( '(
4. Full information: Learner observes entire function /(
5. Bandit information: Learner only observes the scalar /(('()

Learning protocol:

Goal: Minimize regret = max
8∈9

∑(;<= /((') − ∑(;<= /( '( .

• [Gupta & Roughgarden ’16] have online algorithms for Max-Weight Independent Set with smoothed adversaries.
• [Cohen-Addad & Kanade ’17] consider 1-dim. piecewise constant functions with smoothed adversaries.

Online Piecewise Lipschitz Optimization



A Mean Adversary
Fact: There exists an adversary choosing piecewise constant 

functions from [0,1] to [0,1] such that every full information 
online algorithm has linear regret.

At round &, adversary chooses a threshold '( and flips a coin to choose either

0 1'(0 1'(

or

Learner has expected utility of ½ per round à expected total utility */2.
Let -( = Set of points with payout 1 in first & rounds
Set '( to be midpoint of -(/0 à -1 has utility *
Regret = */2.



Dispersion

Def: Functions !" ⋅ , … , !&(⋅) are ),* -dispersed at point + if the ℓ--ball . /,0
contains discontinuities for at most 1 of !" … , !&.

The mean adversary concentrated discontinuities near /∗. Even very near points had low utility!
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/ 0

Each colored line is a discontinuity of one function.

Ball of radius 0 about / contains 2 discontinuities.
à (0, 2)-dispersed.

0

1Functions will satisfy a range of dispersion parameters:



The Sum of Disperse Functions

Not disperse

Many boundaries within interval

Let !",… , !% be PWL functions and plot their sum ∑' !'

Disperse

Few boundaries within interval



Key Property of Dispersed Functions
Lemma: Let !",… , !%: ' → [0,1] be piecewise --Lipschitz and (/, 0)-dispersed at a 

maximizer 2∗. Then every 2 ∈ 5(2∗, /) satisfies ∑78"% !7(2) ≥ :;< − <-/ − 0.

At most 0 fn’s At most < fn’s

!",… , !%

Is !7 --Lipschitz on 
5 2∗, / ?

2∗

!7 2 − !7 2∗ ≤ -/yes!7 2 − !7 2∗ ≤ 1 no

“The /-neighborhood of 2∗ has high utility”. 
Dispersion characterizes how the utility decays with /.

Proof:



Full Information Regret Bounds
We analyze the classic Exponentially Weighted Forecaster [Cesa-Bianchi & Lugosi ’06]

Algorithm: (Parameter ! > 0)
At round $, sample %& from '& % ∝ exp(! ∑./0&10 2.(%)).

Theorem: If 20,… , 26: 8 → [0,1] are piecewise =-Lipschitz and  (>, ?)-dispersed at %∗, 

EWF has regret A BC log 0
G
+ B=> + ? .

When is this a good bound? For > = 1/(= B) and ? = KA( B) regret is KA( BC ).
Intuition: 
• The ball L(%∗, >) has utility at least AMB − B=> − ?.
• EWF can compete with L(%∗, >) when its volume is non-negligible.

Note: Don’t need to know (>, ?) to run algorithm.
%∗



Matching Lower Bound
Theorem: For any algorithm !, there are piecewise constant functions "#,… , "& so that !
has expected regret at least 

Ω inf(,,-) /0 log #
, + 5

Where the infimum is over all (6, 5)-dispersion parameters satisfied by "#,… , "& at 7∗.

Idea: Calculate dispersion parameters for mean adversary. 

0 1;0 1;
or

• Can make upper bound only tight for 5 ≥ /.
• Analysis of [G&R ‘16, C-A&K ‘17] both use analysis similar to (6, 1)-dispersion.



Smoothed Adversaries and Dispersion

Consider any adversary chooses threshold functions !",… , !%: 0,1 → [0,1]:

0 1,

Location , ∈ [0,1]
Orientation . ∈ {±1}

Location , corrupted by adding 2~4(0, 67).

0 1, + 2 ,

Density of ,: is ;(1/6).
For any interval = of width >:
• Expected # discontinuities is ;(?>/6).
• Intervals have VC-dim 2 à w.h.p. for all =, # discontinuities is @;(?>/6 + ?)

Lemma: For any > > 0, the fn’s !",… , !% are (>, B)-dispersed for B = @;(?>/6 + ?) w.h.p. 

Similar to [G&R ’16, C-A&K ’17] we often consider smoothed adversaries.
A simple example:

Take > = D
%à regret = ; ? log %D



Smoothed Adversaries and Dispersion
More generally: adversary is unable to precisely pick some 
problem parameters (e.g. item values in knapsack).
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Challenges:
• Each utility function has multiple dependent discontinuities.
• Distribution of discontinuity location depends on setting.
• How do we generalize to multiple dimensions?

! = ln %&/%(
ln(*&/*()

Dispersion decouples problem-specific smoothness arguments from regret bounds, 
differential privacy utility guarantees, and uniform convergence.



Dispersion in Algorithm Configuration and Pricing
We show !, # -dispersion with ! ≈ 1/ ' and # ≈ ' under smoothness assumptions for

• Greedy algorithms for knapsack and max-weight independent set.

• (-bidder, )-item posted price mechanisms and second price auctions w/ reserves.
• Maximizing revenue or social welfare.
• Additive, unit-demand, and general valuations.

Under no assumption we show dispersion for

• Semidefinite rounding algorithms for integer quadratic programming
• *-linear rounding [Feige & Langberg ‘06]
• Outward rotations [Zwick ‘99]
• Both are generalizations of the Goemans & Williamson max cut algorithm [‘95].



More Results from Dispersion
Bandit online optimization of piecewise Lipschitz functions:
• Learner only observes the scalar !"($") each round.

• Dispersion with & ≈ 1/*+/(,-.) and / ≈ *
012
013 implies regret 45 *

012
013 63, + 9 .

Differentially Private Batch Optimization
• Given !+,… , !< up-front, estimate maximizer of +< ∑" !".
• Satisfy (>, ?)-differential privacy (w.r.t. changing any one function).
• Exponential mechanism has suboptimality 45 +

<@ 6 log
+
D + 9& + E

< .
• Matching lower bounds.
Uniform Convergence via Empirical Rademacher Bounds
• If !+,… , !< are drawn i.i.d. from a distribution F and are globally (&, /)-dispersed, then

• w.h.p., for every $ ∈ H, we have +< ∑" !" $ − JK∼M ! $ = 45
, OPQ2R
< + 9& + E

< .



Conclusions & Open Questions
• Introduced dispersion, which measures concentration of discontinuities of PLW fns.
• Dispersion-based regret bounds for online optimization of PWL functions.
• Utility guarantees for differentially private optimization.
• Uniform convergence in statistical settings.

• Examples of dispersion in real problems.

Open Questions:
• Dispersion-like definitions for other types of bad properties beyond discontinuities.
• Algorithm configuration is between full-info and bandit feedback. Can we take advantage?
• More refined algorithms for bandit online optimization.
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Thanks!


