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Data-Driven Algorithm Configuration

Problem instances from specific application.
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Goal:

 Automatically find the best parameters for a specific application domain.
* Algorithm is run repeatedly, historic instances are training data.

 Want provable guarantees for online and private settings.



An Overview

e Algorithm configuration often requires optimizing sums of piecewise Lipschitz functions.
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* Worst-case impossibility results for online and private optimization of PWL functions.

Our Contributions:

* |dentify a general structural property called dispersion that implies
* Good regret bounds in online optimization
e Utility guarantees for differentially private optimization
* Uniform convergence results in statistical settings.

» Satisfied in real problems under very mild assumptions.



[Gupta & Roughgarden ’16]

Example: Greedy Knapsack Algorithm
Problem Instance: ‘ ?
;

e (@Givennitems
* item i hasvalue v; and size s; < %

 aknapsack with capacity K

Find the most valuable subset of items that fits. .)
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Algorithm: (Parameter p = 0)
Add items in decreasing order of score, (i) = vi/sf.
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Order of items fixed.



Online Piecewise Lipschitz Optimization

Learning protocol:

Foreachroundt =1, ..., T:

Learner chooses point p; € C C R?.

Adversary chooses piecewise L-Lipschitz function u;: C — R.
Learner gets reward u;(p;)

Full information: Learner observes entire function u;
Bandit information: Learner only observes the scalar u;:(p;)
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Goal: Minimize regret = max Y_iu(p) = Xi_;u(p.).
pE

 [Gupta & Roughgarden ’16] have online algorithms for Max-Weight Independent Set with smoothed adversaries.
 [Cohen-Addad & Kanade ’17] consider 1-dim. piecewise constant functions with smoothed adversaries.



A Mean Adversary

Fact: There exists an adversary choosing piecewise constant
functions from |0,1] to |0,1] such that every full information
online algorithm has linear regret.

At round ¢, adversary chooses a threshold 7, and flips a coin to choose either

or

0 T, 1 0 Tt 1
Learner has expected utility of %% per round = expected total utility 7' /2.

Let | |

Set 7; to be midpoint of = (1 has utility T | |

Regret =T /2. |



Dispersion

The mean adversary concentrated discontinuities near p*. Even very near points had low utility!

Def: Functions u,(+), ..., ur(+) are (w, k)-dispersed at point p if the £,-ball B(p, w)
contains discontinuities for at most k of 14 ..., ur.

Each colored line is a discontinuity of one function.

Ball of radius w about p contains 2 discontinuities.
- (w, 2)-dispersed.

Functions will satisfy a range of dispersion parameters:




The Sum of Disperse Functions

Let 14, ..., u; be PWL functions and plot their sum ;; u;
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Key Property of Dispersed Functions

Lemma: Let 14, ..., us: C — [0,1] be piecewise L-Lipschitz and (w, k)-dispersed at a
maximizer p*. Then every p € B(p*, w) satisfies >./_; u;(p) = OPT — TLw — k.

“The w-neighborhood of p* has high utility”.
Dispersion characterizes how the utility decays with w.

Proof: U, ..., UT

. no Is 1 L-Lipschitz on yes .
luc(p) —ue(p™)| <1 — [ tB(p*pW)? ] — |u(p) —u(p™)| < Lw

At most k fn’s At most T fn’s




Full Information Regret Bounds

We analyze the classic Exponentially Weighted Forecaster jceso-Bianchi & Lugosi '06]

Algorithm: (Parameter 4 > 0)
At round t, sample p; from p;(p) < exp(1 Y21 u(p)).

Theorem: If 14, ..., ur: C — [0,1] are piecewise L-Lipschitz and (w, k)-dispersed at p~,

EWF has regret O (\/Td log% + TLw + k).

When is this a good bound? For w = 1/(L/T) and k = O(\/T) regretis O(\Td ).
Intuition:

* The ball B(p*, w) has utility at least OPT — TLw — k.
* EWF can compete with B(p", w) when its volume is non-negligible.

Note: Don’t need to know (w, k) to run algorithm.



Matching Lower Bound

Theorem: For any algorithm A, there are piecewise constant functions 1, ..., us so that A

has expected regret at least
. 1
§) ((évnlg) \/Td log (;) + k>

Where the infimum is over all (w, k)-dispersion parameters satisfied by u, ..., ur at p~.

Idea: Calculate dispersion parameters for mean adversary.
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e Can make upper bound only tight for k > +/T.
* Analysis of [G&R ‘16, C-A&K ‘17] both use analysis similar to (w, 1)-dispersion.



Smoothed Adversaries and Dispersion
Similar to [G&R 16, C-A&K ’17] we often consider smoothed adversaries.

A simple example:
Consider any adversary chooses threshold functions i+, ..., u: [0,1] — [0,1]:

Location 7 € [0,1] Location T corrupted by adding Z~N (0, c%).
Orientation s € {+1}
|
> I
|
|
0 T 1 0 T+7Z T 1

Lemma: For any w > 0, the fn’s uy, ..., uy are (w, k)-dispersed for k = O(Tw /o ++/T) w.h.p.

Density of 7, is O(1/0). ; -
For any interval | of width w: Take w = 7T - regret = 0 ( /T log;)

* Expected # discontinuitiesis O(Tw /o).
* Intervals have VC-dim 2 = w.h.p. for all /, # discontinuities is O (Tw /o + /T)



Smoothed Adversaries and Dispersion
More generally: adversary is unable to precisely pick some ?

problem parameters (e.g. item values in knapsack).
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Challenges:

e
* Each utility function has multiple dependent discontinuities. ')
<>

e Distribution of discontinuity location depends on setting.
* How do we generalize to multiple dimensions?

Y — ~ In(v;/v))
S—4 e : P~ In(si/s))
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Dispersion decouples problem-specific smoothness arguments from regret bounds,
differential privacy utility guarantees, and uniform convergence.



Dispersion in Algorithm Configuration and Pricing

We show (w, k)-dispersion with w = 1/+/T and k =~ +/T under smoothness assumptions for

=
 Greedy algorithms for knapsack and max-weight independent set. @

 n-bidder, m-item posted price mechanisms and second price auctions w/ reserves.

* Maximizing revenue or social welfare. .\
 Additive, unit-demand, and general valuations. N \
I\
Under no assumption we show dispersion for — ®

* Semidefinite rounding algorithms for integer quadratic programming
 s-linear rounding [Feige & Langberg ‘06]
e  Qutward rotations [Zwick 99]

 Both are generalizations of the Goemans & Williamson max cut algorithm [95].



More Results from Dispersion

Bandit online optimization of piecewise Lipschitz functions:
* Learner only observes the scalar u;(p;) each round.

a+1 [ ar
« Dispersion with w ~ 1/T/(@%2) and k ~ Ta+2 implies regret O (Td+2(\/ d39 + L))

Differentially Private Batch Optimization

* Given uq, ..., ur up-front, estimate maximizer of%zt Uyg.

» Satisfy (€, 0)-differential privacy (w.r.t. changing any one function).
* Exponential mechanism has suboptimality O (Tie d log% + Lw + %)
* Matching lower bounds.

Uniform Convergence via Empirical Rademacher Bounds
* Ifuy,..,up aredrawn i.i.d. from a distribution P and are globally (w, k)-dispersed, then
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* w.h.p., forevery p € C, we have ‘%Zt us(p) — Eu~p[u(p)]‘ =0 ( - Y+ Lw + ;)




Conclusions & Open Questions

* Introduced dispersion, which measures concentration of discontinuities of PLW fns.
* Dispersion-based regret bounds for online optimization of PWL functions.
e Utility guarantees for differentially private optimization.
* Uniform convergence in statistical settings.

 Examples of dispersion in real problems.
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Open Questions:
* Dispersion-like definitions for other types of bad properties beyond discontinuities.
* Algorithm configuration is between full-info and bandit feedback. Can we take advantage?

* More refined algorithms for bandit online optimization.



Thanks!



