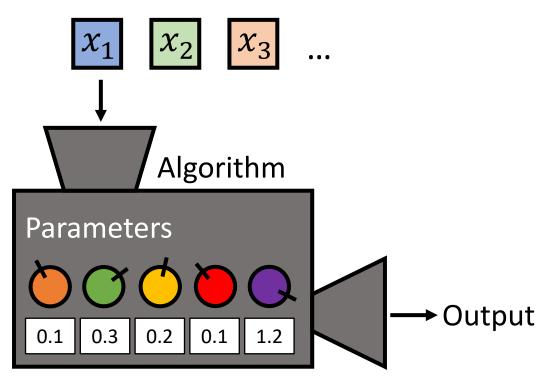
Dispersion for Data-Driven Algorithm Configuration, Online Learning, and Private Optimization

Travis Dick

Joint work with Nina Balcan and Ellen Vitercik Carnegie Mellon University

# Data-Driven Algorithm Configuration

Problem instances from specific application.

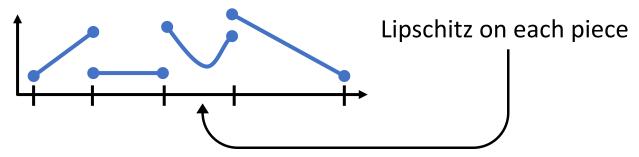


#### Goal:

- Automatically find the best parameters for a specific application domain.
- Algorithm is run repeatedly, historic instances are training data.
- Want provable guarantees for online and private settings.

#### An Overview

• Algorithm configuration often requires optimizing sums of piecewise Lipschitz functions.



Worst-case impossibility results for online and private optimization of PWL functions.

#### **Our Contributions:**

- Identify a general structural property called *dispersion* that implies
  - Good regret bounds in online optimization
  - Utility guarantees for differentially private optimization
  - Uniform convergence results in statistical settings.
- Satisfied in real problems under very mild assumptions.

# Example: Greedy Knapsack Algorithm

#### [Gupta & Roughgarden '16]

**Problem Instance:** 

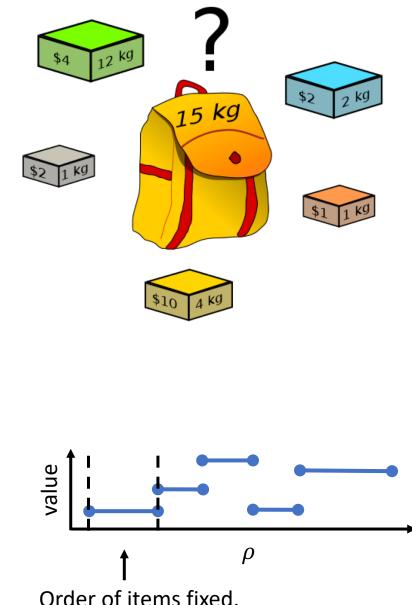
- Given *n* items
- item *i* has value  $v_i$  and size  $s_i$
- a knapsack with capacity K

Find the most valuable subset of items that fits.

Algorithm: (Parameter  $\rho \geq 0$ )

Add items in decreasing order of  $\operatorname{score}_{\rho}(i) = v_i / s_i^{\rho}$ .

**Observation:** For one instance, total value is piecewise constant in  $\rho$ .



#### Online Piecewise Lipschitz Optimization

Learning protocol:

For each round t = 1, ..., T:

- 1. Learner chooses point  $\rho_t \in C \subset \mathbb{R}^d$ .
- 2. Adversary chooses piecewise *L*-Lipschitz function  $u_t: C \rightarrow R$ .
- 3. Learner gets reward  $u_t(\rho_t)$
- **4.** Full information: Learner observes entire function  $u_t$
- 5. Bandit information: Learner only observes the scalar  $u_t(\rho_t)$

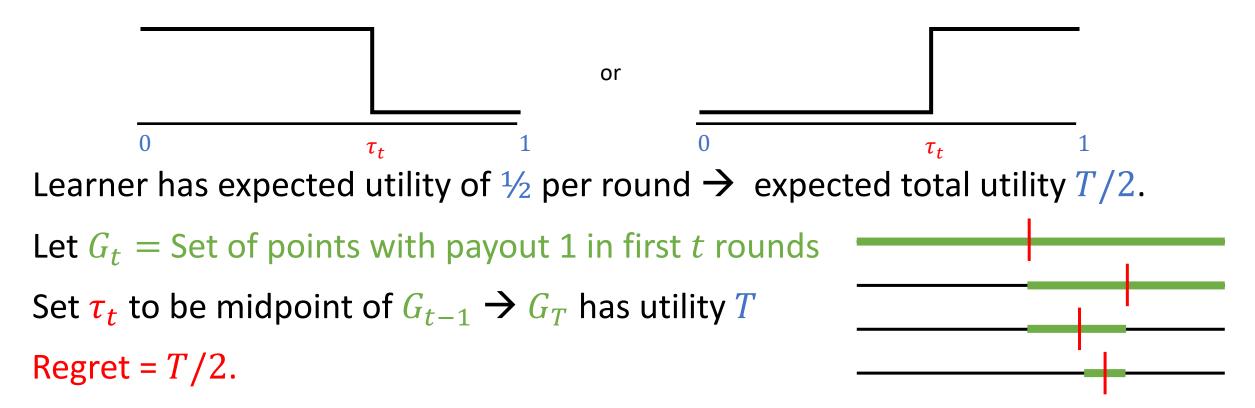
**Goal:** Minimize regret = 
$$\max_{\rho \in C} \sum_{t=1}^{T} u_t(\rho) - \sum_{t=1}^{T} u_t(\rho_t)$$
.

- [Gupta & Roughgarden '16] have online algorithms for Max-Weight Independent Set with smoothed adversaries.
- [Cohen-Addad & Kanade '17] consider 1-dim. piecewise constant functions with smoothed adversaries.

#### A Mean Adversary

Fact: There exists an adversary choosing piecewise constant functions from [0,1] to [0,1] such that every full information online algorithm has linear regret.

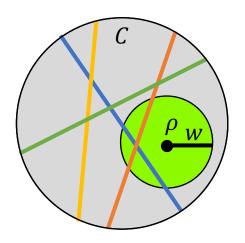
At round t, adversary chooses a threshold  $\tau_t$  and flips a coin to choose either



## Dispersion

The mean adversary concentrated discontinuities near  $\rho^*$ . Even very near points had low utility!

**Def:** Functions  $u_1(\cdot), \ldots, u_T(\cdot)$  are (w, k)-dispersed at point  $\rho$  if the  $\ell_2$ -ball  $B(\rho, w)$  contains discontinuities for at most k of  $u_1 \ldots, u_T$ .



Each colored line is a discontinuity of one function.

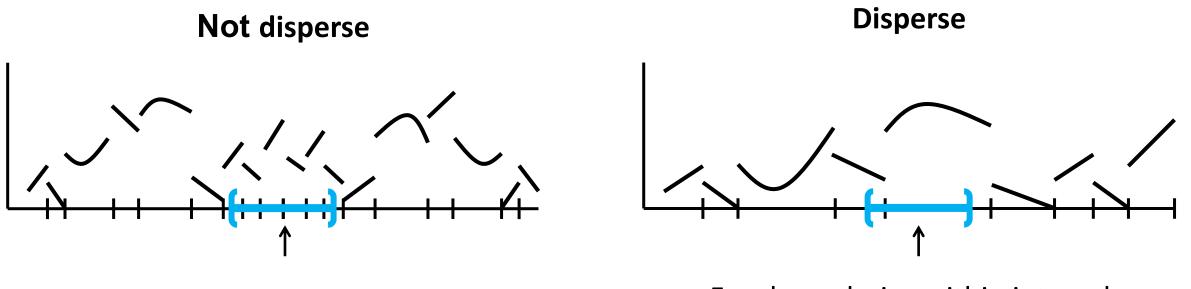
Ball of radius w about  $\rho$  contains 2 discontinuities.  $\rightarrow (w, 2)$ -dispersed.

Functions will satisfy a range of dispersion parameters:



### The Sum of Disperse Functions

Let  $u_1, \ldots, u_T$  be PWL functions and plot their sum  $\sum_t u_t$ 



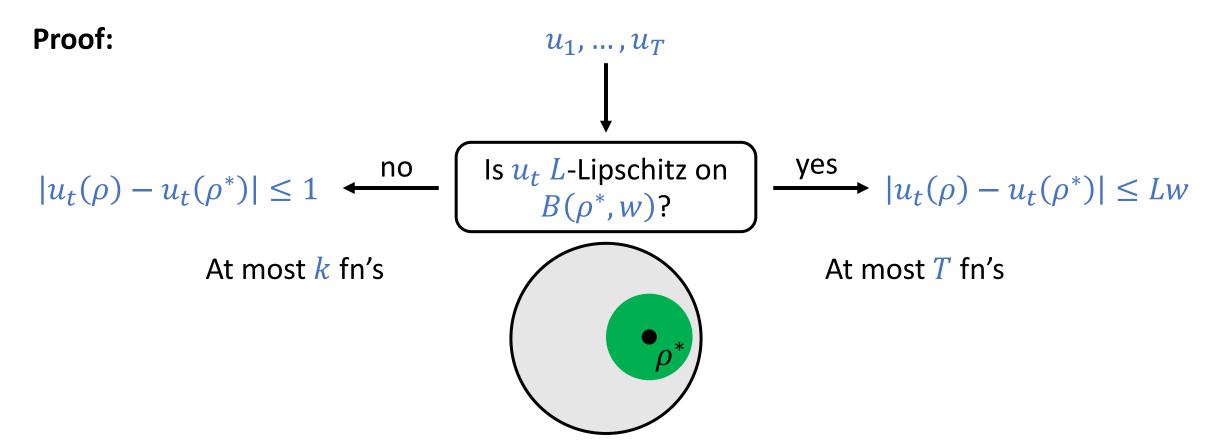
Many boundaries within interval

Few boundaries within interval

#### Key Property of Dispersed Functions

**Lemma:** Let  $u_1, ..., u_T: C \to [0,1]$  be piecewise *L*-Lipschitz and (w, k)-dispersed at a maximizer  $\rho^*$ . Then every  $\rho \in B(\rho^*, w)$  satisfies  $\sum_{t=1}^T u_t(\rho) \ge OPT - TLw - k$ .

"The *w*-neighborhood of  $\rho^*$  has high utility". Dispersion characterizes how the utility decays with *w*.



# Full Information Regret Bounds

We analyze the classic Exponentially Weighted Forecaster [Cesa-Bianchi & Lugosi '06]

**Algorithm:** (Parameter  $\lambda > 0$ ) At round *t*, sample  $\rho_t$  from  $p_t(\rho) \propto \exp(\lambda \sum_{s=1}^{t-1} u_s(\rho))$ .

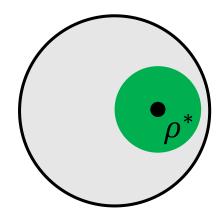
**Theorem:** If  $u_1, ..., u_T: C \to [0,1]$  are piecewise *L*-Lipschitz and (w, k)-dispersed at  $\rho^*$ , EWF has regret  $O\left(\sqrt{Td\log\frac{1}{w}} + TLw + k\right)$ .

When is this a good bound? For  $w = 1/(L\sqrt{T})$  and  $k = \tilde{O}(\sqrt{T})$  regret is  $\tilde{O}(\sqrt{Td})$ .

Intuition:

- The ball  $B(\rho^*, w)$  has utility at least OPT TLw k.
- EWF can compete with  $B(\rho^*, w)$  when its volume is non-negligible.

**Note:** Don't need to know (w, k) to run algorithm.



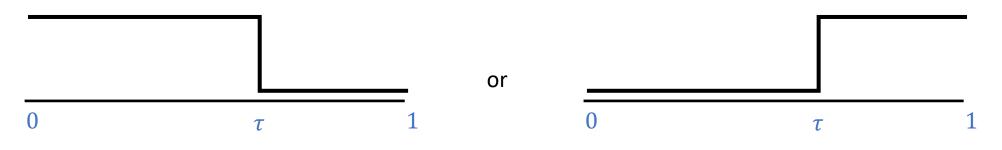
### Matching Lower Bound

**Theorem:** For any algorithm A, there are piecewise constant functions  $u_1, \ldots, u_T$  so that A has expected regret at least

$$\Omega\left(\inf_{(w,k)}\sqrt{Td\log\left(\frac{1}{w}\right)}+k\right)$$

Where the infimum is over all (w, k)-dispersion parameters satisfied by  $u_1, \dots, u_T$  at  $\rho^*$ .

Idea: Calculate dispersion parameters for mean adversary.



- Can make upper bound only tight for  $k \ge \sqrt{T}$ .
- Analysis of [G&R '16, C-A&K '17] both use analysis similar to (w, 1)-dispersion.

Smoothed Adversaries and Dispersion

Similar to [G&R '16, C-A&K '17] we often consider smoothed adversaries.

#### A simple example:

Consider any adversary chooses threshold functions  $u_1, ..., u_T: [0,1] \rightarrow [0,1]$ :

Location  $\tau \in [0,1]$  Location  $\tau$  corrupted by adding  $Z \sim N(0, \sigma^2)$ .

Orientation  $s \in \{\pm 1\}$  Image: constant of the second secon

**Lemma:** For any w > 0, the fn's  $u_1, ..., u_T$  are (w, k)-dispersed for  $k = \tilde{O}(Tw/\sigma + \sqrt{T})$  w.h.p.

Density of  $\tau_t$  is  $O(1/\sigma)$ . For any interval *I* of width *w*:

• Expected # discontinuities is  $O(Tw/\sigma)$ .

Take 
$$w = \frac{\sigma}{\sqrt{T}} \rightarrow \text{regret} = O\left(\sqrt{T \log \frac{T}{\sigma}}\right)$$

• Intervals have VC-dim 2  $\rightarrow$  w.h.p. for all *I*, # discontinuities is  $\tilde{O}(Tw/\sigma + \sqrt{T})$ 

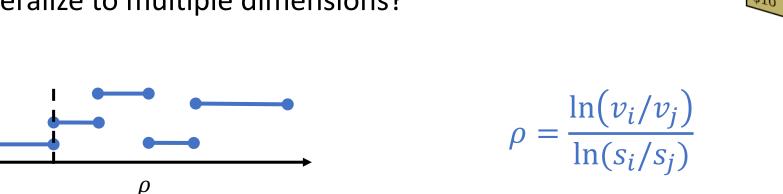
# Smoothed Adversaries and Dispersion

More generally: adversary is unable to precisely pick some problem parameters (e.g. item values in knapsack).

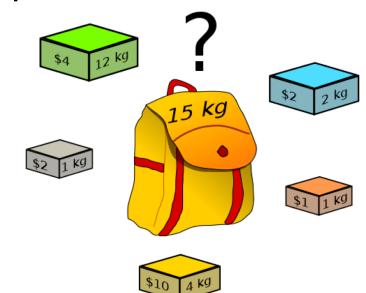
#### **Challenges:**

value

- Each utility function has multiple dependent discontinuities.
- Distribution of discontinuity location depends on setting.
- How do we generalize to multiple dimensions?



Dispersion decouples problem-specific smoothness arguments from regret bounds, differential privacy utility guarantees, and uniform convergence.



# Dispersion in Algorithm Configuration and Pricing

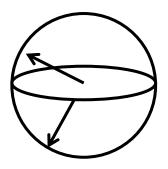
We show (w, k)-dispersion with  $w \approx 1/\sqrt{T}$  and  $k \approx \sqrt{T}$  under smoothness assumptions for

- Greedy algorithms for knapsack and max-weight independent set.
- *n*-bidder, *m*-item posted price mechanisms and second price auctions w/ reserves.
  - Maximizing revenue or social welfare.
  - Additive, unit-demand, and general valuations.

Under *no assumption* we show dispersion for

- Semidefinite rounding algorithms for integer quadratic programming
  - *s*-linear rounding [*Feige & Langberg '06*]
  - Outward rotations [Zwick '99]
  - Both are generalizations of the Goemans & Williamson max cut algorithm ['95].





# More Results from Dispersion

Bandit online optimization of piecewise Lipschitz functions:

- Learner only observes the scalar  $u_t(\rho_t)$  each round.
- Dispersion with  $w \approx 1/T^{1/(d+2)}$  and  $k \approx T^{\frac{d+1}{d+2}}$  implies regret  $\tilde{O}\left(T^{\frac{d+1}{d+2}}(\sqrt{d3^d}+L)\right)$ .

#### **Differentially Private Batch Optimization**

- Given  $u_1, \ldots, u_T$  up-front, estimate maximizer of  $\frac{1}{T} \sum_t u_t$ .
- Satisfy  $(\epsilon, \delta)$ -differential privacy (w.r.t. changing any one function).
- Exponential mechanism has suboptimality  $\tilde{O}\left(\frac{1}{T\epsilon}d\log\frac{1}{w}+Lw+\frac{k}{T}\right)$ .
- Matching lower bounds.

#### Uniform Convergence via Empirical Rademacher Bounds

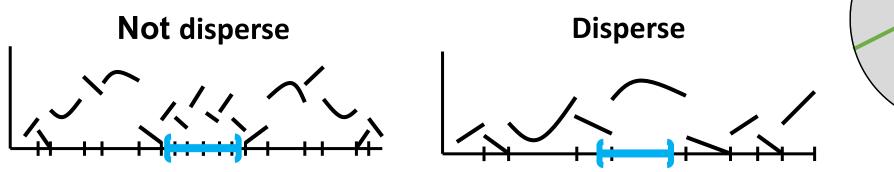
- If  $u_1, \ldots, u_T$  are drawn i.i.d. from a distribution P and are globally (w, k)-dispersed, then
- w.h.p., for every  $\rho \in C$ , we have  $\left|\frac{1}{T}\sum_{t} u_t(\rho) \mathbb{E}_{u \sim P}[u(\rho)]\right| = \tilde{O}\left(\sqrt{\frac{d \log \frac{1}{w}}{T}} + Lw + \frac{k}{T}\right)$ .





## Conclusions & Open Questions

- Introduced **dispersion**, which measures concentration of discontinuities of PLW fns.
  - Dispersion-based regret bounds for online optimization of PWL functions.
  - Utility guarantees for differentially private optimization.
  - Uniform convergence in statistical settings.
- Examples of dispersion in real problems.



#### **Open Questions:**

- Dispersion-like definitions for other types of bad properties beyond discontinuities.
- Algorithm configuration is between full-info and bandit feedback. Can we take advantage?
- More refined algorithms for bandit online optimization.

### Thanks!