
1. Project onto the
unit sphere

2. Discard samples
with fewer than tn
samples in C(x,ra)

3. Connect points closer
than rc and find

connected componentsC(x, ra)
⌧n rc

4. Classify x by projecting onto the sphere and outputting label of nearest cluster.x

1. Output code is one-vs-all (is the identity).
2. is the set of points belonging to class .
3. The data is nearly uniform on the set . That is,

the density is supported on and satisfies

K1

K2

K3

Main Ideas:

uniform nearly uniform

• After projecting onto the sphere, the projected density is no longer nearly uniform.
• We learn by estimating the connected components of .
• Step 2 discards low density points and keeps high-density points.
• Step 3 recovers the connected components of by clustering surviving points.

Theorem. For any , running the above algorithm with lb ub min ,
, lb

ub
, and ub lb min will have error w.p. .

• Data generated by distribution over , with Pr .
• Our algorithms have two steps: first, partition the unlabeled data into groups, and sec-

ond, query the labels of the large groups.
• In the agnostic setting, we simply query multiple labels per group to recover the label

assignment given by , which gives error .

h1

h2h3

K1 K2

K3

K4

C =

2

664

+1 �1 �1
+1 +1 �1
�1 +1 �1
�1 �1 +1

3

775

4. If x belongs to a labeled cell, output that label, otherwise guess.

1. Let for each label .
2. For every column of , there is a row such that negating produces a row not

present in , and the corresponding partition cell is non-empty.
(Equivalently: every forms a face of one not shared by another).

3. such that: (i) The “unshared faces” have length at least and (ii) Non-class cells
are at least distance apart.

4. The data is nearly uniform on the set (See one-vs-all for definition).

Theorem. For any , running the above algorithm with , ,
, where is the diameter of , will have error w.p. .

Main Ideas:

r

2. If it contains fewer
than tn samples, add

(r,w) to the set H

1. For each sample x,
find the half-ball of

radius r containing the
fewest samples

3. The hyperplanes

partition the input space. Query label of
the L cells with the most samples.

h

fraction

• A half-ball -approximates a hyperplane if most of the ball’s
volume is separated from its center by .

• W.h.p., every half-ball that passes step 2 is an -approximation to
one of , …, , and every hyperplane is -approximated.

• All -approximations to agree except on a margin of size .

• Each margin has ub margin prob. mass.

1. Compute the single linkage
hierarchical clustering.

2. Query the labels of m
randomly chosen points.

3. Find the coarsest pruning
with each cluster containing

exactly one label.

m

4. Output classifier that assigns point x to the label of the nearest cluster.x

1. Output-code makes at most mistakes when predicting codewords.
2. Codewords have Hamming distance at least .
3. The data distribution satisfies the following thick level set condition:

has thick level sets up to level with parameters if:
, , the set

is nonempty and .

• Let , …, be the CCs of int and define
for .

• Thick level sets guarantee that for our value of , all samples
in will be connected in the dist.- pruning.

Main Ideas: • Separation: if , hits hyperplanes.

• in general position: s.t. if , .

• So our algorithm outputs a coarsification of the dist.- pruning.

• Choose .

• For our choice of , w.h.p. every set contains at least one
labeled example, so we never make mistakes on sets.

• A new point lands in w.p. .

Theorem. Fix , set Vol and . If int has
connected components each with prob. mass , running the above algorithm with

ln and will have error w.p. .

Learning Model

Linear Output-code Classifiers

• Given iid sample .
• Can query the label for any .
• Goal: minimize and

number of label queries.

penguin

giraffe

cat

dog

pet? fur? long neck? multiple lives?

+1 +1 -1 -1

+1 +1 -1 +1

-1 -1 -1 -1

-1 +1 +1 -1

pet?

fur?

long neck?

mult. lives?
dog

cat

giraffe

penguin

Overview
• Data efficient algorithms for classification should minimize the amount of labeled data

that is required, since most modern classification tasks have an abundance of cheap
unlabeled data, but annotating it is relatively expensive.

• This is especially true for problems with many classes, since we require labeled exam-
ples for all classes.

• We show that by making the implicit assumptions of output-coding explicit, we can
more fully exploit them when learning from limited labeled data.

• Our main assumption is that there exists a low-error (unknown) output-code classifier.

• Reduction from multi-class to binary learning.
• Design binary partitions of the classes (a code matrix).
• Learn a linear classifier for each partition.
• Output

where is the row of .

Distribution
!

Target	
Function
"∗: % → '

Learning	
Algorithm

Classification	rule
f:% → '

(),… , (,

(-
.-
(-/
.-/

…	

Label Efficient Learning by Exploiting Multi-class Output Codes
Maria-Florina Balcan, Travis Dick, Yishay Mansour

Overview and Background Error Correcting Output-codes

The Boundary Features Condition One-vs-all on the Unit Ball

Extension to the Agnostic Setting

