Label Efficient Learning by Exploiting Multi-class Output Codes

Maria-Florina Balcan, Travis Dick, Yishay Mansour

Overview and Background

Overview

- Data efficient algorithms for classification should minimize the amount of *labeled* data that is required, since most modern classification tasks have an abundance of cheap unlabeled data, but annotating it is relatively expensive.
- This is especially true for problems with many classes, since we require labeled examples for all classes.
- We show that by making the implicit assumptions of output-coding explicit, we can more fully exploit them when learning from limited labeled data.
- Our main assumption is that there exists a low-error (unknown) output-code classifier.

Learning Model

- Given iid sample $S = \{x_1, \dots, x_n\} \sim p$.
- Can query the label $c^*(x)$ for any $x \in S$.
- Goal: minimize $\Pr_{x \sim p}(h(x) \neq c^*(x))$ and number of label queries.

Error Correcting Output-codes

1. Output-code makes at most β mistakes when predicting codewords.

- 2. Codewords have Hamming distance at least $2\beta + d + 1$.
- 3. The data distribution satisfies the following thick level set condition:

p has thick level sets up to level λ_0 with parameters (C, σ_0) if: $\forall \lambda \leq \lambda_0, \, \forall \sigma \leq \sigma_0, \, \text{the set} \, A_\sigma = \{x : B(x, \sigma) \subset \{p \geq \lambda\}\} \\ \text{is nonempty and } \sup_{x \in \{p \geq \lambda\}} d(x, A_\sigma) \leq C\sigma. \end{cases}$

 $C = \sqrt{2}$

 Compute the single linkage 2. Query the labels of m 3 hierarchical clustering. randomly chosen points. w

Classification rule $f: X \to Y$

Linear Output-code Classifiers

- Reduction from multi-class to binary learning.
- Design m binary partitions of the L classes (a code matrix $C \in \{\pm 1\}^{L \times m}$).
- Learn a linear classifier $h_i(x) = w_i^\top x b_i$ for each partition.
- Output

$$f(x) = \mathop{\mathrm{argmin}}_{1 \leq i \leq L} \mathrm{d}_{\operatorname{Ham}}\big(\langle h_1(x), \dots, h_m(x)\rangle, C_i$$

where C_i is the i^{th} row of C.

0000000

4. Output classifier that assigns point x to the label of the nearest cluster.

Theorem. Fix $\varepsilon, \delta > 0$, set $\lambda = \varepsilon/\operatorname{Vol}(X)$ and $\sigma = g/4C$. If $\operatorname{int}_{\sigma}\{p \ge \lambda\}$ has N connected components each with prob. mass $\ge \gamma$, running the above algorithm with $m = O(\frac{2}{\gamma} \ln \frac{N}{\delta})$ and $n = \tilde{O}(\frac{1}{(\varepsilon\sigma)^2})$ will have error $\le \varepsilon$ w.p. $1 - \delta$.

Main Ideas:

 C_1 C_2 C_3 C_4

- Separation: if $f(x) \neq f(x')$, [x, x'] hits $\geq d + 1$ hyperplanes.
- $\{h_i\}$ in general position: $\exists g > 0$ s.t. if $f(x) \neq f(x')$, $\|x x'\| \geq g$.
- So our algorithm outputs a coarsification of the dist.-g pruning.
- Let A_1 , ..., A_N be the CCs of $\operatorname{int}_{\sigma} \{p \geq \lambda\}$ and define $C_i = \{x : d(x, A_i) \leq C\sigma\}$ for $i = 1, \dots, N$.
- Thick level sets guarantee that for our value of n, all samples in C_i will be connected in the dist.- $4C\sigma$ pruning.
- Choose $\sigma = g/(4C)$.
- For our choice of m, w.h.p. every C_i set contains at least one labeled example, so we never make mistakes on C_i sets.
- A new point $x \sim p$ lands in $\bigcup_i C_i$ w.p. $\geq 1 \varepsilon$.

The Boundary Features Condition

One-vs-all on the Unit Ball

- 1. Let $K_i = \{x : \langle h_1(x), \dots, h_m(x) \rangle = C_i\}$ for each label $i \in [L]$.
- 2. For every column j of C, there is a row i such that negating C_{ij} produces a row not present in C, and the corresponding partition cell is non-empty.

(Equivalently: every h_j forms a face of one K_i not shared by another $K_{i'}$).

- 3. $\exists R > 0$ such that: (i) The "unshared faces" have length at least R and (ii) Non-class cells are at least distance R apart.
- 4. The data is nearly uniform on the set $K = \bigcup_{i=1}^{L} K_i$ (See one-vs-all for definition).

$h_1 \bullet K_1$	K_2		+1	-1	-1
h_3 h_4	K_3 $C =$	+1	+1	-1	
		$C \equiv$	-1	+1	-1
	h_2		-1	-1	$+1_{-}$
4					_

1. For each sample x,
find the half-ball of
radius r containing the
fewest samples**2.** If it contains fewe
than τn samples, ad
(x, w) to the set H

4. If x belongs to a labeled cell, output that label, otherwise guess.

Theorem. For any $\varepsilon, \delta > 0$, running the above algorithm with r = R/2, $\tau = \frac{1}{4}\alpha c_{lb}r^d v_d$, $n = \tilde{O}(\frac{m^2 c_{ub}^2 D^d}{\varepsilon^4 R^d})$, where D is the diameter of \mathcal{X} , will have error $\leq \varepsilon$ w.p. $1 - \delta$.

1. Output code is one-vs-all (C is the identity).

 $4C\sigma$

2. $K_i = \{x : h_i(x) > 0\}$ is the set of points belonging to class *i*.

3. The data is nearly uniform on the set $K = \bigcup_{i=1}^{L} K_i$. That is, the density p is supported on K and satisfies

Theorem. For any $\varepsilon, \delta > 0$, running the above algorithm with $r_c = \Omega(\varepsilon c_{\rm lb}/(c_{\rm ub}^2 b_{\rm min}))$, $r_a = r_c/2$, $\tau = \frac{c_{\rm lb}}{2c_{\rm ub}}V^d(r_a)\varepsilon$, and $n = \tilde{O}((c_{\rm ub}^4 d/(\varepsilon^2 c_{\rm lb}^2 b_{\rm min}^2))^d)$ will have error $\le \varepsilon$ w.p. $\ge 1 - \delta$.

Main Ideas:

- After projecting onto the sphere, the projected density q is no longer nearly uniform.
- We learn by estimating the connected components of $\{q \ge \varepsilon\}$.
- Step 2 discards low density points and keeps high-density points.
- Step 3 recovers the connected components of $\{q \ge \varepsilon\}$ by clustering surviving points. p uniform p nearly uniform

Main Ideas:

• A half-ball $B^{1/2} \alpha$ -approximates a hyperplane h if most of the ball's volume is separated from its center by h.

• W.h.p., every half-ball that passes step 2 is an α -approximation to one of $h_1, ..., h_m$, and every hyperplane is α -approximated.

• All α -approximations to h_i agree except on a margin of size $O(\sqrt{\alpha}D)$.

• Each margin has $\leq c_{ub} \cdot Vol(margin \cap \mathcal{X})$ prob. mass.

 $\leq \alpha$ fraction

Extension to the Agnostic Setting

Data generated by distribution P over X × Y, ∃f* with Pr_{(x,y)~P}(f*(x) ≠ y) ≤ η.
Our algorithms have two steps: first, partition the unlabeled data into groups, and second, query the labels of the large groups.

• In the agnostic setting, we simply query multiple labels per group to recover the label assignment given by f^* , which gives error $\leq \eta + \varepsilon$.