
Data Driven Resource Allocation
for Distributed Learning

Travis Dick, Mu Li, Venkata Krishna Pillutla,
Colin White, Maria-Florina Balcan, Alex Smola

Outline

1. Problem
2. Clustering-based Data Partitioning
3. Summary of results
4. Efficiently Clustering Data

1. LP-Rounding Approximation Algorithm
2. Beyond worst-case analysis: !-means++
3. Efficiency from subsampling

5. Experimental results
1. Accuracy comparison
2. Scaling experiments

The problem
• Want to distribute data to multiple machines for

efficient machine learning.
• How should we partition the data?

• Common idea: randomly partition the data.
• Clean both in theory and practice, but suboptimal.

1st Partition

2nd Partition

"#$ Partition

…

Data

Machine 1

Machine 2

Machine "

…

Our approach
• Cluster the data and send one cluster to each machine.
• Accurate models tend to be locally simple but globally

complex.

• Cluster the data and send one cluster to each machine.
• Accurate models tend to be locally simple but globally

complex.

• Each machine learns a model for its local data.
• Additional clustering constraints:

• Balance: Clusters should have roughly the same number of points.
• Replication: Each point should be assigned to ! clusters.

Machine 1

Machine 2

Machine 3

Our approach

1. Efficient algorithms with provable worst-case
guarantees for balanced clustering with
replication.

2. For non-worst case data, we show that common
clustering algorithms produce high-quality
balanced clusterings.

3. We show how to efficiently partition a large
dataset by clustering only a small sample.

4. We empirically show that our technique
significantly outperforms baseline methods and
strongly scales.

Summary of results

How can we efficiently compute balanced clusterings
with replication?

Given a dataset !…
• Choose " centers #$, … , #' ∈ !,
• Assign each) ∈ ! to * centers: +$) ,… , +,) ∈ #$, … , #'

• "-means cost: ∑.∈/∑01$, 2), +0)
3

.
• Balance constraints: Each center has between ℓ ! and 5|!| points.

Balanced "-means with replication

x

x
x

x

x
x

LP-Rounding Algorithm

Theorem
The LP-rounding algorithm returns a constant factor approximation
for balanced !-means clustering with replication when " ≥ 2 and
violates the upper capacities by at most %&'' .

* We have analogous results for !-median and !-center clustering as well.

• Can formulate problem as an integer program (NP Hard to solve exactly).
• The linear program relaxation can be solved efficiently…

• but gives ”fractional” centers and “fractional” assignments.

1. Compute a coarse clustering of the data using a simple greedy procedure.
2. Combine centers within each coarse cluster to form “whole” centers.
3. Find optimal assignments by solving a min-cost flow problem.

Beyond worst-case: !-means++

R Q

• For non-worst-case data, common algorithms also work well!

• a clustering instance satisfies ", $ -approximation stability if all
clusterings % with &'() % ≤ 1 + " -./ are $-close to the
optimal clustering. [1]

!-means++ seeding with greedy pruning [5] outputs a nearly
optimal solution for balanced clustering instances satisfying
", $ -approximation stability

Theorem

Goal: Cluster a small sample of data and use this to partition entire
dataset with good guarantees.

Efficiency from Subsampling

x

x
x

Assign new point to the same clusters
as its nearest neighbor.
• Automatically handles balance

constraints.
• New point costs about the same as

neighbor.

Theorem
If the cost on sample is ≤ " ⋅ $%&, then the cost of the extended clustering is
≤ 4" ⋅ $%& + $ ")*+, +)"- + ".
• * is the diameter of the dataset
• -, . measure how representative the sample is, and go to zero as sample size grows.

?

How well does our method perform?

Goal: Measure the difference in accuracy from
different partitioning methods.

1. Partition the data using one of the partitioning
methods.

2. Learn a model on each machine.
3. Report the test accuracy.

• Repeat for multiple values of !
• Larger values of ! are more parallelizable.

Experimental Setup

Baseline Methods

Method Fast? Balanced? Locality?

Random !
Balanced Partition Tree

(kd-tree) 1/2

Locality Sensitive
Hashing !

Our Method

Experimental Evaluation

0.58

0.59

0.6

0.61

0.62

0.63

0.64

A
cc

u
ra

cy

22 23 24 25 26 27 28

of clusters (k)

ours
random
bpt
lsh

MNIST-8M

0.77

0.775

0.78

0.785

0.79

0.795

0.8

A
cc

u
ra

cy

22 23 24 25 26 27 28

of clusters (k)

ours
random
bpt
lsh

0.67

0.68

0.69

0.7

0.71

0.72

0.73

A
cc

u
ra

cy

 21 22 23 24 25 26 27 28 29 210

of clusters (k)

ours
random
bpt
lsh

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

 22 23 24 25 26 27 28 29 210

of clusters (k)

ours
random
bpt

CIFAR10_IN4D CTR

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

u
ra

cy

 28 29 210 211 212 213

of clusters (k)

ours
random
bpt

CIFAR10_IN3C

Synthetic

Strong Scaling
• For a fixed dataset we evaluate the running time of our method using 8, 16, 32, or 64

machines.
• We report the speedup over using 8 machines.
• For all datasets, doubling the number of workers reduces running time by a constant

fraction (i.e., our method strongly scales).

8 16 32 64
Number of Workers

1

2

4
S

p
e

e
d

u
p

 F
a

ct
o

r
o

ve
r

8
 W

o
rk

e
rs

Mnist8m
Cifar10 in3c
Cifar10 in4d
CTR1S

Conclusion

• Propose using balanced clustering with replication
for data partitioning in DML.
• LP-Rounding algorithm with worst-case guarantees.
• Beyond worst-case analysis for k-means++.
• Efficiently partition large datasets by clustering a

sample.
• Empirical support for utility of clustering-based

partitioning.
• Empirically demonstrated strong scaling.

Thanks!

Extra Slides (You’ve gone too far!)

Capacitated !-means with replication
Choose ! centers and assign every point to " centers so that points

are ”close” to their centers and each cluster is roughly the same size.

Minimize ∑$,& '$,& (), * +
Subject to:

• ∑$ '$,& = " for all points * (" assignments)

• ∑$ -$ = ! (! centers)

• ℓ/-$ ≤ ∑& '$,& ≤ 1/-$ for all points) (balancedness)

• '$,&, -$ ∈ 0,1 for all points), *.

As an Integer Program:

• Number the points 1 through /.

• Variable -$ = “1 if point) is a center, 0 otherwise.”

• Variable '$,& = “1 if point * is assigned to point).”

Linear Program Relaxation: '$,&, -$ ∈ 0,1
's are “fractional assignment”, -s are “fractional centers”

LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.

LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.

LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.

LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.

LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.

LP-Rounding Algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.

Theorem
The LP-rounding algorithm returns a constant factor approximation
for capacitated #-means clustering with replication when $ > 1
and violates the upper capacities by at most '()) .

* We have analogous results for #-means and #-center clustering as well.

