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The problem
• Want to distribute data to multiple machines for 

efficient machine learning.
• How should we partition the data?

• Common idea: randomly partition the data.
• Clean both in theory and practice, but suboptimal.
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Our approach
• Cluster the data and send one cluster to each machine.
• Accurate models tend to be locally simple but globally 

complex.
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• Each machine learns a model for its local data.
• Additional clustering constraints:

• Balance: Clusters should have roughly the same number of points.
• Replication: Each point should be assigned to ! clusters.
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1. Efficient algorithms with provable worst-case 
guarantees for balanced clustering with 
replication.

2. For non-worst case data, we show that common 
clustering algorithms produce high-quality 
balanced clusterings.

3. We show how to efficiently partition a large 
dataset by clustering only a small sample.

4. We empirically show that our technique 
significantly outperforms baseline methods and 
strongly scales.

Summary of results



How can we efficiently compute balanced clusterings
with replication?



Given a dataset !…
• Choose " centers #$, … , #' ∈ !,
• Assign each ) ∈ ! to * centers: +$ ) ,… , +, ) ∈ #$, … , #'

• "-means cost: ∑.∈/∑01$, 2 ), +0 )
3

.
• Balance constraints: Each center has between ℓ ! and 5|!| points.

Balanced "-means with replication
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LP-Rounding Algorithm

Theorem
The LP-rounding algorithm returns a constant factor approximation 
for balanced !-means clustering with replication when " ≥ 2 and 
violates the upper capacities by at most  %&'' .

* We have analogous results for !-median and !-center clustering as well. 

• Can formulate problem as an integer program (NP Hard to solve exactly).
• The linear program relaxation can be solved efficiently…

• but gives ”fractional” centers and “fractional” assignments.

1. Compute a coarse clustering of the data using a simple greedy procedure.
2. Combine centers within each coarse cluster to form “whole” centers.
3. Find optimal assignments by solving a min-cost flow problem.



Beyond worst-case: !-means++

R Q

• For non-worst-case data, common algorithms also work well!

• a clustering instance satisfies ", $ -approximation stability if all 
clusterings % with &'() % ≤ 1 + " -./ are $-close to the 
optimal clustering. [1]

!-means++ seeding with greedy pruning [5] outputs a nearly 
optimal solution for balanced clustering instances satisfying 
", $ -approximation stability 

Theorem



Goal: Cluster a small sample of data and use this to partition entire 
dataset with good guarantees.

Efficiency from Subsampling

x

x
x

Assign new point to the same clusters 
as its nearest neighbor.
• Automatically handles balance 

constraints. 
• New point costs about the same as 

neighbor.

Theorem
If the cost on sample is ≤ " ⋅ $%&, then the cost of the extended clustering is
≤ 4" ⋅ $%& + $ ")*+, + )"- + ".
• * is the diameter of the dataset 
• -, . measure how representative the sample is, and go to zero as sample size grows.

?



How well does our method perform?



Goal: Measure the difference in accuracy from 
different partitioning methods.

1. Partition the data using one of the partitioning 
methods.

2. Learn a model on each machine.
3. Report the test accuracy.

• Repeat for multiple values of !
• Larger values of ! are more parallelizable.

Experimental Setup



Baseline Methods

Method Fast? Balanced? Locality?

Random !
Balanced Partition Tree

(kd-tree) 1/2

Locality Sensitive
Hashing !

Our Method



Experimental Evaluation
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Strong Scaling
• For a fixed dataset we evaluate the running time of our method using 8, 16, 32, or 64 

machines.
• We report the speedup over using 8 machines.
• For all datasets, doubling the number of workers reduces running time by a constant 

fraction (i.e., our method strongly scales).
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Conclusion

• Propose using balanced clustering with replication 
for data partitioning in DML.
• LP-Rounding algorithm with worst-case guarantees.
• Beyond worst-case analysis for k-means++.
• Efficiently partition large datasets by clustering a 

sample.
• Empirical support for utility of clustering-based 

partitioning.
• Empirically demonstrated strong scaling.



Thanks!



Extra Slides (You’ve gone too far!)



Capacitated !-means with replication
Choose ! centers and assign every point to " centers so that points 

are ”close” to their centers and each cluster is roughly the same size.

Minimize   ∑$,& '$,& ( ), * +
Subject to:

• ∑$ '$,& = " for all points * (" assignments)

• ∑$ -$ = ! (! centers)

• ℓ/-$ ≤ ∑& '$,& ≤ 1/-$ for all points ) (balancedness)

• '$,&, -$ ∈ 0,1 for all points ), *.

As an Integer Program:

• Number the points 1 through /.

• Variable -$ = “1 if point ) is a center, 0 otherwise.”

• Variable '$,& = “1 if point * is assigned to point ).”

Linear Program Relaxation: '$,&, -$ ∈ 0,1
's are “fractional assignment”, -s are “fractional centers”



LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy 

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.



LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy 

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.



LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy 

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.



LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy 

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.



LP-Rounding algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy 

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.



LP-Rounding Algorithm
1. Solve the LP to get fractional !s and "s.
2. Compute a very coarse clustering of the points using a greedy 

procedure.
3. Within each coarse cluster, round the !s to 0 or 1.
4. Find the optimal integral "s by solving a min-cost flow.

Theorem
The LP-rounding algorithm returns a constant factor approximation 
for capacitated #-means clustering with replication when $ > 1
and violates the upper capacities by at most  '()) .

* We have analogous results for #-means and #-center clustering as well. 


